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Holography

The Holographic Principle is a fundamental idea in quantum gravity that states
that the information in a region of space is fully encoded on its boundary. [t Hooft
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that the information in a region of space is fully encoded on its boundary. [t Hooft
(1993), Susskind (1995)]

The key motivation is the Bekenstein-Hawking entropy which scales with area, not
volume. [Bekenstein (1973), Hawking (1975)]

This motivates 't Hooft and Susskind to propose that gravitational degrees of
freedom should be encoded on a lower-dimensional surface. [t Hooft (1993), Susskind
(1995)]

A concrete example of holography is the AdS/CFT Correspondence [Maldacena
(1997), Gubser-Klebanov-Polyakov (1998), Witten (1998)]

[ Gravity in AdS,,; < CFTy ]

This provides a non-perturbative definition of quantum gravity. It maps strongly
coupled QFTs to weakly coupled gravity.
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O(x): is a gauge-invariant local operator of scaling dimension A.
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AdS/CFT

GKPW dictionary: [Gubser-Klebanov-Polyakov (1998), Witten (1998)]

Zhdry [T] = Zpuik [T]

Boundary partition function:

Zpary [T] = /Dd)e_gbdry’ §bdry = Scer + [z VATO

¢(x): dynamical fields of the bdry CFT.

O(x): is a gauge-invariant local operator of scaling dimension A.
J(x): is the coupling of O(x) which has scaling dimension d — A.
3 : denotes the AdS bdry at r = co.

Bulk partition function:

_ ,d-A
=r5 J

Zouik [T] :/DJe*Sb“'k with J|Z

J(x, r): bulk fields.
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Gauge/Gravity Correspondence: A special AdS/CFT limit where bulk gravity is
classical, and the boundary theory has a large number of degrees of freedom.
[Witten (1998), Gubser (1999)]
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Gauge/Gravity Correspondence: A special AdS/CFT limit where bulk gravity is
classical, and the boundary theory has a large number of degrees of freedom.
[Witten (1998), Gubser (1999)]

In the gauge/gravity level, partition functions are dominated by saddle points:

[ Sbary [T T = Spup[Ji M] ]

RHS: SP . [J; M] is the finite on-shell bulk action with Dirichlet b.c. on M

oo
— D
—/ dr/ Lok
on-shell 0 T,

LHS: On-shell boundary action (CFT with a single-trace deformation)

Spulk[J: M] :/ Lok
M

on-shell

82, 17: 5] = Scrrlo™] + /Z V7 T O[¢7]

where ¢* is given by the solution of the saddle-point equation

6Scrr[97] — 00[¢"] _ . x
mely VoS0 = v =41)
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Limitations of AdS/CFT

e AdS/CFT applies to asymptotically AdS spacetimes.
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Limitations of AdS/CFT

e AdS/CFT applies to asymptotically AdS spacetimes.

e Bulk fields obey Dirichlet boundary conditions:

6J(x,r00) =0 J(x,re0) = r& 2T (x)

e The dual theory resides on the asymptotic timelike boundary of AdS.
Freelance Holography:
e Freelance I: Relaxing boundary conditions in gauge/gravity correspondence.

e Freelance II: Moving the AdS boundary into the bulk to construct finite-cutoff
holography.
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M: A (d + 1)-dimensional asymptotically AdS spacetime with metric gy,

3 : denotes AdS boundary Located at r = co.

¥ ,: A family of codimension-one timelike hypersurfaces labeled by r € [0, 0o].
M,: The AdS region bounded by ¥,.

> 1 A cutoff surface at r = rec.

Mc: The AdS region with r < r., bounded by X .

Radial ADM decomposition:

ds? = N2dr? + hp(dx? + U? dr)(dx® 4+ UP dr)
Conformal induced metric: v,, = r—2 h,p with determinants /—h = r? \/—~.
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Covariant Phase Space Formalism: [Lee, Wald (1990), lyer, Wald (1994), Wald, Zoupas (2000)]
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The action in the region M, is given by
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Covariant Phase Space Formalism: [Lee, Wald (1990), lyer, Wald (1994), Wald, Zoupas (2000)]
The action in the region M, is given by
W w w
Spur[Mr] = / L[] Ly = ‘C’Eulk + Op w#
M,
where J represents dynamical fields.
Varying the action gives
SN M, = / (E6J+9,0Y)
M,
where E = 0 defines the bulk equations of motion.

Covariant phase space (CPS) freedom:

Ol = OF + sWH + 9, Y
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Role of W-freedom: modifying the bulk boundary conditions.
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Oo(%,) = / o= [ o06J
r Z’

where O is the canonical conjugate momentum to J.
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W-Freedom as a Canonical Transformation

Role of W-freedom: modifying the bulk boundary conditions.

The Dirichlet symplectic potential has the following form

eD(z,):/’e':/’oaJ

where O is the canonical conjugate momentum to J.

This symplectic potential is compatible with the boundary condition 5‘/}): =0.
r
Introducing W-freedom leads to a canonical transformation:

ew(z,):/Z (05J+5W’[J,O]):/Z 067

r

which is compatible with the boundary condition (5]|): =0, referred to as the
W-type boundary condition.
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Radial Evolution of Symplectic Potential

Start with the on-shell variation of the Lagrangian:

LY = 0,0}, = 0,9, + 0,04

on-shell
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Radial Evolution of Symplectic Potential

Start with the on-shell variation of the Lagrangian:

sLl, = 8,0l = 0,0, + 9,07,

on-shell

Now, integrate over X ,:

d w
EG)vv(>:r) = 5/):’ L] p-shen

This equation governs the radial evolution of the symplectic potential.

Its integrated form is:

on-shell

r
Ow(Es) ~ Ow(x,) =5 [ ar [ £,
r X,

Recall the general form of the symplectic potential:

~ ~ A T 2
/ b6j— [ 06J= 5/ dr / Lokl ansen
Zrz ):(1 n X,
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Freelance, |

Holographic meaning of W-freedom: Multi-trace deformations of the boundary
theory. [Witten (2001)]

Let us start with gauge/gravity correspondence:
§t|)3dry[*7; I = SbDulk[J? M]
Adding [ W[J; O] to both sides gives:
§gg,,y[j; I = Sg\l/ﬂk[‘j; M]

where St‘)"élk[J; M] is the bulk action with W-type boundary condition and

S [T ] = S04 [T ZH/{ w

The following rescaling translates bulk fields to boundary fields:

V= =rV=h J=ri8y o=r20
’Y o0 o0

oo
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Duality at a finite distance:

S\.l?dry[b75; zC] = szulk[Jc; MC]

11/21



Duality at a finite distance:

§Edry[k75; zC] = szulk[Jc; MC]

RHS: SP . [Jc; Mc] is the on-shell bulk action in M. with Dirichlet conditions:

SbDulk[JciMc]=/ Louk :/ df/ Lok
Me on-shell 0 5,

With the Dirichlet boundary condition

on-shell

Je=J(re,x)=r279F. with 6J.=0

11/21



Duality at a finite distance:

§Edry[k75; zC] = szulk[Jc; MC]

RHS: SP . [Jc; Mc] is the on-shell bulk action in M. with Dirichlet conditions:

SbDulk[JciMc]=/ Louk :/ df/ Lok
Me on-shell 0 5,

With the Dirichlet boundary condition

on-shell

Je=J(re,x)=r279F. with 6J.=0

LHS: The boundary theory at the cutoff evolves via the deformation flow equation

d

ST (N E] = Soon(r) Soon(r)i= [ Lo
r X

on-shell
’

With the initial condition
rllrgo §dery[‘—7(r); z"] = §I)de[j; Z]
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Proof:

We begin with the variation of the GKPW dictionary:
0 Zpdry [T 2] = 6 Zpuik [J; M]
At the saddle point, we obtain:

55CFT+/5(MO)5+/ V=1 08T = 8Spuldi M]
¥ >

=0

Now, we use the following rescalings:
- d—n A
V= =rz/=h T =r5"J O0=r30

Applying these rescalings, we find:

/ V=h06J = 852,14 M]
)N

This represents the variation of the bulk action with Dirichlet boundary conditions.
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The previous equation was:
/ V=R OG5S = 852, [J: M]
by
Now, recall the following relation:

rn
/ \/—hOcSJ—/ \/—hOJJ:zS/ dr/ P
<, 5, n 5,

Taking r» = oo and r = rc, we obtain:

on-shell

on-shell

)
/\/—hOcSJ:éSEMk[J;M]—é/ dr/ P
pS re Y,

=5/Cdr/ c°
0 5,

With the following rescaling:

el 3 Sput[Jei Me]

V_'Yc:r;dv_hc Jc:rgiAJc Oc:rcAOc

We arrive at:

V=0T = 5Sp[Je; M]
P
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The previous equation was:

V=Y 08T = 8S0ldei Ml
pae

Now, consider a QFT on X with a single trace deformation:
§bdry [Te: ] = Soary + / vV—0T
X

The corresponding equation of motion (at the saddle point) is:

5§bdry [Tei Xc] _

0 —— 65bdry +/ 5('\/ -y O)j =0
d¢ T

Using the saddle point equation, we obtain:

5Soary + / S(V=7O)T + / VA O8T = 52,y Jei Me]
Y pa

=0

This equation is the variation of the following equation:

gbdry[Jc; zc] = Sl?u”([-jc; Mc]
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To address the above question, we compare the following two equations
SEdry [J' z] = SbDqu[J; M]

gbdry[jc; zc] = S|3Du|k[Jc§ MC]

From the subtraction of these equations, we find

Soary [T ] = Soary[Tei Te] =Shi[s M] — Sh e M)

[e @)

_ D

*/ dr/ 'Cblﬂk!on»shell
re T,

The differential form of the above equation is as follows

d
STV E] = Son(n) Soon()i= [ LB,
dr b

r

on-shell

We solve the above deformation flow equation with the initial condition

fim, S LT (1) 2] = S5 17571
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Finite cutoff duality with arbitrary boundary conditions

The duality is given by:

§t\>/\z/1ry[jc? ] = Smk[jc; M]

RHS: is the bulk on-shell action on M. compatible with W boundary conditions,
§J.=0.

LHS: To determine the boundary theory, we proceed in two steps:

1. Radial Flow: We begin by deforming the theory from radius roc to rc, while
maintaining the asymptotic boundary condition, say, W’.

2. Boundary Condition Change: Next, we apply a deformation to transition from
boundary condition W’ to W.
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Example: Einstein's Gravity

Pure Einstein-Hilbert action:
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Example: Einstein's Gravity
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The counterterms are:
1
d=2: Ect:—zx/—h d=3: :—7\/ (1+ R)
Renormalized Brown-York energy-momentum tensor (rBY-EMT):
Tab _ 7"—ab 4 Tab
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where the standard BY-EMT 72> and the counterterm 72 are
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Pure Einstein-Hilbert action:

st?ulk_/ Ebmk—*/ \/%(RJr%)Jrh/zr(\/thJrﬁcc)

The counterterms are:

1
d=2: ECt:_Z\/_h d=3: :—f\/ (1-‘,— R)

Renormalized Brown-York energy-momentum tensor (rBY-EMT):

Tab — 7"—ab 4 7:1)

where the standard BY-EMT 72> and the counterterm 72 are

o 2 6L
Tab = Kab _ Khab 7-ab P
< v —h 8hap
The explicit forms of the counterterm EMT are:
1 2
d=2: 72 Zhab d=3: 72 oh
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Deformation in Einstein's Gravity

Deformation action for Dirichlet to Dirichlet transition:

d=2: Sp,p=-— \/—hN|:OT7-—+77—i|,
pas

N 2N
d=3: Sp.p=-— \/th[OﬁJr%HRabnbf ZR'T]
pa
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Deformation in Einstein's Gravity

Deformation action for Dirichlet to Dirichlet transition:
T
d=2: Spyp=-— v—hN OTT""? ,
pas

. N
d=3: Sp.up=-— \/th[OTer%JreRab?;bfZRT]
pa

where the 07—7’— term is the TT operator: [Taylor (2018), Hartman, Kruthoff, Shaghoulian, and
Tajdini (2018)]

7-2
e, _
OTT =T 7:?b d—1
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Deformation in Einstein's Gravity

Deformation action for Dirichlet to Dirichlet transition:
T
d=2: Spyp=-— v—hN (97—7-——‘,—7 ,
pas

N 2N
d=3: Sp.p=-— \/th[OTﬁ%HRaM;b* ZR'T]
pa

where the 07—7’— term is the TT operator: [Taylor (2018), Hartman, Kruthoff, Shaghoulian, and
Tajdini (2018)]

Org =TT - %

Deformation action for Neumann to Neumann transition:

d =2: SN~>N = / N\/ [ OTT 74—:|

r

T ab pab 3‘62
d=3: Suon-= N\/—h[—ﬂ+ Rop T ——RT+ RabR >

2 16 QQ]
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Simple Argument for TT as Radial Deformation

A simple argument for the emergence of TT:

Consider the variation of the Einstein-Hilbert action:

655I:I))ulk[M’] A Tab 6§hab

on sheII 2

Radial evolution of the bulk on-shell action arises by choosing £ = 0:

d
aszmk[M] V=hT 8 hap

on- sheII 2

— _ /Zh N Tab Kap
P

s, d—1

V—hN (Tabzb -7 )
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Simple Argument for TT as Radial Deformation

A simple argument for the emergence of TT:

Consider the variation of the Einstein-Hilbert action:

655t?ulk[Mf] V—hT?® d¢hap

on sheII 2

Radial evolution of the bulk on-shell action arises by choosing £ = 0:

d
Eszulk[M] v 7—a Orhap

on- sheII 2

=— | V=ANT?K,,
pa

V=hN (TabTab - TIT >

s, d—1
Using holography at finite distance, where SbDulk[M,]’ ) bdry[):,] we obtain:
Nn-si
d a0 — 7T
dr ay Sbany [l =~ hN <Tab7;b B d—1)
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Two Equivalent Interpretations

There are two interpretations for TT-like deformations:
1. Generator of radial deformation. [McGough, Mezei, and Verlinde (2016)]

2. Modification of asymptotic boundary conditions. [Guica and Monten (2019)]

The following key equation shows the equivalence of these two interpretations:

b 5. =/ b6J— 5/ dr Sww(r)
e pa re
For the second interpretation, we have:
J=JJ.6] and O.=6.J, 0]

Thus, 6J. = 0 with respect to X corresponds to a mixed boundary condition.
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Summary and Key Takeaways

e We extended the gauge/gravity correspondence in two key directions:

1. Considering arbitrary boundary conditions.

2. Moving the AdS boundary to finite distances.

o Radial deformation of the fluid/gravity correspondence.

e Shifting the AdS boundary to the black hole horizon and beyond [Ali, Almheiri,
and Lin (2025)].

e Solving the deformation flow equation.
e Deformation vs. Renormalization Group Interpretation.

e Exploring holography in other asymptotic regions.
Thank You!
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