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Holography

The Holographic Principle is a fundamental idea in quantum gravity that states

that the information in a region of space is fully encoded on its boundary. [’t Hooft

(1993), Susskind (1995)]

The key motivation is the Bekenstein-Hawking entropy which scales with area, not

volume. [Bekenstein (1973), Hawking (1975)]

This motivates ’t Hooft and Susskind to propose that gravitational degrees of

freedom should be encoded on a lower-dimensional surface. [’t Hooft (1993), Susskind

(1995)]

A concrete example of holography is the AdS/CFT Correspondence [Maldacena

(1997), Gubser-Klebanov-Polyakov (1998), Witten (1998)]

Gravity in AdSd+1 ↔ CFTd

This provides a non-perturbative definition of quantum gravity. It maps strongly

coupled QFTs to weakly coupled gravity.
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AdS/CFT

GKPW dictionary: [Gubser-Klebanov-Polyakov (1998), Witten (1998)]

Zbdry [J ] = Zbulk [J ]

Boundary partition function:

Zbdry [J ] =

∫
Dϕ e−Ŝbdry , Ŝbdry := SCFT +

∫
Σ

√
−γ J O

ϕ(x): dynamical fields of the bdry CFT.

O(x): is a gauge-invariant local operator of scaling dimension ∆.

J (x): is the coupling of O(x) which has scaling dimension d −∆.

Σ: denotes the AdS bdry at r = ∞.

Bulk partition function:

Zbulk [J ] =

∫
DJ e−Sbulk with J

∣∣
Σ
= rd−∆

∞ J

J(x , r): bulk fields.
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Dϕ e−Ŝbdry , Ŝbdry := SCFT +

∫
Σ

√
−γ J O

ϕ(x): dynamical fields of the bdry CFT.

O(x): is a gauge-invariant local operator of scaling dimension ∆.

J (x): is the coupling of O(x) which has scaling dimension d −∆.

Σ: denotes the AdS bdry at r = ∞.

Bulk partition function:

Zbulk [J ] =

∫
DJ e−Sbulk with J

∣∣
Σ
= rd−∆

∞ J

J(x , r): bulk fields.

3 / 21



Gauge/Gravity Correspondence: A special AdS/CFT limit where bulk gravity is

classical, and the boundary theory has a large number of degrees of freedom.

[Witten (1998), Gubser (1999)]

In the gauge/gravity level, partition functions are dominated by saddle points:

ŜD
bdry[J ; Σ] = SD

bulk[J;M]

RHS: SD
bulk[J;M] is the finite on-shell bulk action with Dirichlet b.c. on M

SD
bulk[J;M] =

∫
M

LD
bulk

∣∣∣
on-shell

=

∫ ∞

0
dr

∫
Σr

LD
bulk

∣∣∣
on-shell

LHS: On-shell boundary action (CFT with a single-trace deformation)

ŜD
bdry[J ; Σ] = SCFT[ϕ

∗] +

∫
Σ

√
−γ J O[ϕ∗]

where ϕ∗ is given by the solution of the saddle-point equation

δSCFT[ϕ
∗]

δϕ
+

∫
Σ

√
−γ J

δO[ϕ∗]

δϕ
= 0 =⇒ ϕ∗ = ϕ∗[J ]

4 / 21



Gauge/Gravity Correspondence: A special AdS/CFT limit where bulk gravity is

classical, and the boundary theory has a large number of degrees of freedom.

[Witten (1998), Gubser (1999)]

In the gauge/gravity level, partition functions are dominated by saddle points:

ŜD
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Limitations of AdS/CFT

• AdS/CFT applies to asymptotically AdS spacetimes.

• Bulk fields obey Dirichlet boundary conditions:

δJ(x , r∞) = 0 J(x , r∞) = rd−∆
∞ J (x)

• The dual theory resides on the asymptotic timelike boundary of AdS.

Freelance Holography:

• Freelance I: Relaxing boundary conditions in gauge/gravity correspondence.

• Freelance II: Moving the AdS boundary into the bulk to construct finite-cutoff

holography.
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Σr

Σ

Mr

M: A (d + 1)-dimensional asymptotically AdS spacetime with metric gµν .

Σ: denotes AdS boundary Located at r = ∞.

Σr : A family of codimension-one timelike hypersurfaces labeled by r ∈ [0,∞].

Mr : The AdS region bounded by Σr .

Σc : A cutoff surface at r = rc .

Mc : The AdS region with r ≤ rc , bounded by Σc .

Radial ADM decomposition:

ds2 = N2 dr2 + hab(dx
a + Ua dr)(dxb + Ub dr)

Conformal induced metric: γab = r−2 hab with determinants
√
−h = rd

√
−γ.
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Covariant Phase Space Formalism: [Lee, Wald (1990), Iyer, Wald (1994), Wald, Zoupas (2000)]

The action in the region Mr is given by

SW
bulk[Mr ] =

∫
Mr

LW
bulk[J] LW

bulk = LD
bulk + ∂µW

µ

where J represents dynamical fields.

Varying the action gives

δSW
bulk[Mr ] =

∫
Mr

(
E δJ + ∂µΘ

µ
W

)
where E = 0 defines the bulk equations of motion.

Covariant phase space (CPS) freedom:

Θµ
W = Θµ

D + δWµ + ∂νY
µν
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W -Freedom as a Canonical Transformation

Role of W -freedom: modifying the bulk boundary conditions.

The Dirichlet symplectic potential has the following form

ΘD(Σr ) =

∫
Σr

Θr =

∫
Σr

O δJ

where O is the canonical conjugate momentum to J.

This symplectic potential is compatible with the boundary condition δJ
∣∣
Σr

= 0.

Introducing W -freedom leads to a canonical transformation:

ΘW(Σr ) =

∫
Σr

(O δJ + δW r [J,O]) =

∫
Σr

Õ δJ̃

which is compatible with the boundary condition δJ̃
∣∣
Σr

= 0, referred to as the

W-type boundary condition.
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Õ δJ̃

which is compatible with the boundary condition δJ̃
∣∣
Σr

= 0, referred to as the

W-type boundary condition.

8 / 21



W -Freedom as a Canonical Transformation

Role of W -freedom: modifying the bulk boundary conditions.

The Dirichlet symplectic potential has the following form

ΘD(Σr ) =

∫
Σr

Θr =

∫
Σr

O δJ

where O is the canonical conjugate momentum to J.

This symplectic potential is compatible with the boundary condition δJ
∣∣
Σr

= 0.

Introducing W -freedom leads to a canonical transformation:

ΘW(Σr ) =

∫
Σr

(O δJ + δW r [J,O]) =

∫
Σr
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Radial Evolution of Symplectic Potential

Start with the on-shell variation of the Lagrangian:

δLW
bulk

∣∣
on-shell

= ∂µΘ
µ
W = ∂rΘ

r
W + ∂aΘ

a
W

Now, integrate over Σr :

d

dr
ΘW(Σr ) = δ

∫
Σr

LW
bulk

∣∣
on-shell

This equation governs the radial evolution of the symplectic potential.

Its integrated form is:

ΘW(Σr2 )−ΘW(Σr1 ) = δ

∫ r2

r1

dr

∫
Σr

LW
bulk

∣∣
on-shell

Recall the general form of the symplectic potential:∫
Σr2

Õ δJ̃ −
∫
Σr1

Õ δJ̃ = δ

∫ r2

r1

dr

∫
Σr

LW
bulk

∣∣
on-shell
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Radial Evolution of Symplectic Potential

Start with the on-shell variation of the Lagrangian:

δLW
bulk

∣∣
on-shell

= ∂µΘ
µ
W = ∂rΘ

r
W + ∂aΘ

a
W

Now, integrate over Σr :

d

dr
ΘW(Σr ) = δ

∫
Σr

LW
bulk

∣∣
on-shell
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Freelance, I

Holographic meaning of W -freedom: Multi-trace deformations of the boundary

theory. [Witten (2001)]

Let us start with gauge/gravity correspondence:

ŜD
bdry[J ; Σ] = SD

bulk[J;M]

Adding
∫
Σ W [J;O] to both sides gives:

ŜW
bdry[J ; Σ] = SW

bulk[J;M]

where SW
bulk[J;M] is the bulk action with W-type boundary condition and

ŜW
bdry[J ; Σ] = ŜD

bdry[J ; Σ] +

∫
Σ
W

The following rescaling translates bulk fields to boundary fields:

√
−γ = r−d

∞
√
−h J = rd−∆

∞ J O = r∆∞ O
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ŜW
bdry[J ; Σ] = SW

bulk[J;M]

where SW
bulk[J;M] is the bulk action with W-type boundary condition and

ŜW
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bdry[J ; Σ] +

∫
Σ
W

The following rescaling translates bulk fields to boundary fields:

√
−γ = r−d

∞
√
−h J = rd−∆

∞ J O = r∆∞ O

10 / 21



Freelance, I

Holographic meaning of W -freedom: Multi-trace deformations of the boundary

theory. [Witten (2001)]

Let us start with gauge/gravity correspondence:

ŜD
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Duality at a finite distance:

ŜD
bdry[Jc ; Σc ] = SD

bulk[Jc ;Mc ]

RHS: SD
bulk[Jc ;Mc ] is the on-shell bulk action in Mc with Dirichlet conditions:

SD
bulk[Jc ;Mc ] =

∫
Mc

LD
bulk

∣∣∣
on-shell

=

∫ rc

0
dr

∫
Σr

LD
bulk

∣∣∣
on-shell

With the Dirichlet boundary condition

Jc ≡ J(rc , x) = r∆−d
c Jc with δJc = 0

LHS: The boundary theory at the cutoff evolves via the deformation flow equation

d

dr
ŜD
bdry[J (r); Σr ] = SD→D(r) SD→D(r) :=

∫
Σr

LD
bulk

∣∣∣
on-shell

With the initial condition

lim
r→∞

ŜD
bdry[J (r); Σr ] = ŜD

bdry[J ; Σ]
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Proof :

We begin with the variation of the GKPW dictionary:

δZbdry [J ; Σ] = δZbulk [J;M]

At the saddle point, we obtain:

δSCFT +

∫
Σ
δ(
√
−γO)J︸ ︷︷ ︸

=0

+

∫
Σ

√
−γO δJ = δSD

bulk[J;M]

Now, we use the following rescalings:

√
−γ = r−d

∞
√
−h J = rd−∆

∞ J O = r∆∞ O

Applying these rescalings, we find:∫
Σ

√
−hO δJ = δSD

bulk[J;M]

This represents the variation of the bulk action with Dirichlet boundary conditions.
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The previous equation was:∫
Σ

√
−hO δJ = δSD

bulk[J;M]

Now, recall the following relation:∫
Σr2

√
−hO δJ −

∫
Σr1

√
−hO δJ = δ

∫ r2

r1

dr

∫
Σr

LD
∣∣∣
on-shell

Taking r2 = ∞ and r1 = rc , we obtain:∫
Σc

√
−hO δJ =δSD

bulk[J;M]− δ

∫ ∞

rc

dr

∫
Σr

LD
∣∣∣
on-shell

=δ

∫ rc

0
dr

∫
Σr

LD
∣∣∣
on-shell

= δSD
bulk[Jc ;Mc ]

With the following rescaling:

√
−γc = r−d

c

√
−hc Jc = rd−∆

c Jc Oc = r∆c Oc

We arrive at: ∫
Σc

√
−γO δJ = δSD

bulk[Jc ;Mc ]
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The previous equation was:∫
Σc

√
−γO δJ = δSD

bulk[Jc ;Mc ]

Now, consider a QFT on Σc with a single trace deformation:

Ŝbdry[Jc ; Σc ] = Sbdry +

∫
Σc

√
−γOJ

The corresponding equation of motion (at the saddle point) is:

δŜbdry[Jc ; Σc ]

δϕ
= 0 =⇒ δSbdry +

∫
Σc

δ(
√
−γO)J = 0

Using the saddle point equation, we obtain:

δSbdry +

∫
Σc

δ(
√
−γO)J︸ ︷︷ ︸

=0

+

∫
Σc

√
−γO δJ = δSD

bulk[Jc ;Mc ]

This equation is the variation of the following equation:

Ŝbdry[Jc ; Σc ] = SD
bulk[Jc ;Mc ]
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The only remaining question is the form of the boundary action Ŝbdry[Jc ; Σc ].

To address the above question, we compare the following two equations

ŜD
bdry[J ; Σ] = SD

bulk[J;M]

Ŝbdry[Jc ; Σc ] = SD
bulk[Jc ;Mc ]

From the subtraction of these equations, we find

Ŝbdry[J ; Σ]− Ŝbdry[Jc ; Σc ] =SD
bulk[J;M]− SD

bulk[Jc ;Mc ]

=

∫ ∞

rc

dr

∫
Σr

LD
bulk

∣∣
on-shell

The differential form of the above equation is as follows

d

dr
ŜD
bdry[J (r); Σr ] = SD→D(r) SD→D(r) :=

∫
Σr

LD
bulk

∣∣∣
on-shell

We solve the above deformation flow equation with the initial condition

lim
r→∞

ŜD
bdry[J (r); Σr ] = ŜD

bdry[J ; Σ]
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rc

dr

∫
Σr

LD
bulk

∣∣
on-shell

The differential form of the above equation is as follows

d

dr
ŜD
bdry[J (r); Σr ] = SD→D(r) SD→D(r) :=

∫
Σr

LD
bulk

∣∣∣
on-shell

We solve the above deformation flow equation with the initial condition

lim
r→∞

ŜD
bdry[J (r); Σr ] = ŜD

bdry[J ; Σ]
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Finite cutoff duality with arbitrary boundary conditions

The duality is given by:

ŜW
bdry[J̃c ; Σc ] = SW

bulk[J̃c ;Mc ]

RHS: is the bulk on-shell action on Mc compatible with W boundary conditions,

δJ̃c = 0.

LHS: To determine the boundary theory, we proceed in two steps:

1. Radial Flow: We begin by deforming the theory from radius r∞ to rc , while

maintaining the asymptotic boundary condition, say, W′.

2. Boundary Condition Change: Next, we apply a deformation to transition from

boundary condition W′ to W.
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Example: Einstein’s Gravity

Pure Einstein-Hilbert action:

SD
bulk =

∫
Mr

LD
bulk =

1

2

∫
Mr

√
−g

(
R +

d(d − 1)

ℓ2

)
+

∫
Σr

(√
−h K + Lct

)
The counterterms are:

d = 2 : Lct = −
1

ℓ

√
−h d = 3 : Lct = −

2

ℓ

√
−h

(
1 +

ℓ2

4
R̂

)
Renormalized Brown-York energy-momentum tensor (rBY-EMT):

T ab = T̊ ab + T ab
ct

where the standard BY-EMT T̊ ab and the counterterm T ab
ct are:

T̊ ab := K ab − Khab T ab
ct := −

2
√
−h

δLct

δhab

The explicit forms of the counterterm EMT are:

d = 2 : T ab
ct =

1

ℓ
hab d = 3 : T ab

ct =
2

ℓ
hab − ℓĜ ab
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Deformation in Einstein’s Gravity

Deformation action for Dirichlet to Dirichlet transition:

d = 2 : SD→D = −
∫
Σc

√
−hN

[
OT T̄ +

T
ℓ

]
,

d = 3 : SD→D = −
∫
Σc

√
−hN

[
OT T̄ +

T
ℓ

+ ℓ R̂ab Tab −
ℓ

4
R̂ T

]
where the OT T̄ term is the TT̄ operator: [Taylor (2018), Hartman, Kruthoff, Shaghoulian, and

Tajdini (2018)]

OT T̄ := T ab Tab −
T 2

d − 1

Deformation action for Neumann to Neumann transition:

d = 2 : SN→N =

∫
Σr

N
√
−h

[
−
1

2
OT T̄ −

T
ℓ

]
d = 3 : SN→N =

∫
Σr

N
√
−h
[
−

T
2ℓ

+
ℓ

2
R̂abT ab −

ℓ

8
R̂T +

ℓ2

2
R̂abR̂

ab −
3ℓ2

16
R̂2
]
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Simple Argument for TT̄ as Radial Deformation

A simple argument for the emergence of TT̄:

Consider the variation of the Einstein-Hilbert action:

δξS
D
bulk[Mr ]

∣∣∣
on-shell

= −
1

2

∫
Σr

√
−h T ab δξhab

Radial evolution of the bulk on-shell action arises by choosing ξ = ∂r :

d

dr
SD
bulk[Mr ]

∣∣∣
on-shell

= −
1

2

∫
Σr

√
−h T ab ∂rhab

= −
∫
Σr

√
−hN T ab Kab

= −
∫
Σr

√
−hN

(
T abT̊ab −

T̊ T
d − 1

)

Using holography at finite distance, where SD
bulk[Mr ]

∣∣∣
on-shell

= ŜD
bdry[Σr ], we obtain:

d

dr
ŜD
bdry[Σr ] = −

∫
Σr

√
−hN

(
T abT̊ab −

T̊ T
d − 1

)
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Two Equivalent Interpretations

There are two interpretations for TT̄-like deformations:

1. Generator of radial deformation. [McGough, Mezei, and Verlinde (2016)]

2. Modification of asymptotic boundary conditions. [Guica and Monten (2019)]

The following key equation shows the equivalence of these two interpretations:∫
Σc

Õc δJ̃c =

∫
Σ
Õ δJ̃ − δ

∫ ∞

rc

dr SW→W(r)

For the second interpretation, we have:

J̃c = J̃c[J̃, Õ] and Õc = Õc[J̃, Õ]

Thus, δJ̃c = 0 with respect to Σ corresponds to a mixed boundary condition.
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Õ δJ̃ − δ

∫ ∞

rc

dr SW→W(r)

For the second interpretation, we have:
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Summary and Key Takeaways

• We extended the gauge/gravity correspondence in two key directions:

1. Considering arbitrary boundary conditions.

2. Moving the AdS boundary to finite distances.

• Radial deformation of the fluid/gravity correspondence.

• Shifting the AdS boundary to the black hole horizon and beyond [Ali, Almheiri,

and Lin (2025)].

• Solving the deformation flow equation.

• Deformation vs. Renormalization Group Interpretation.

• Exploring holography in other asymptotic regions.

Thank You!
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