A comparative study of void searching algorithms

Sepehr Arbabi Bidgoli

Large Scale Structure Surveys

The 2dF Galaxy Redshift Survey

220.000 redshifts based on APM

The Sloan Digital Sky Survey

SDSS, DR4 : ~ 850.000 spectra → ~ 566.000 Galaxies

The 2dF Galaxy Redshift Survey

The Sloan Digital Sky Survey

The Millennium Simulation

Redshift z = 5.7 (t = 1.0 Gyr)

The Millennium Simulation

Large scale structure Surveys

cluster:

wall:

filaments:

void:

Observations:

Voids are the largest components of the large scale structure.

Voids are hierarchical:

- □ Voids of clusters are up to 100 Mpc/h
- Voids of galaxies with typical sizes between 10-50 Mpc/h
- Smaller galaxies populate voids and subdivide them into smaller voids

Applications:

- Huge voids are a challenge to models of structure formation
- The formation of voids is connected to the formation of galaxies
- Probe of the large scale structure at large distances, where ξ_2 and VPF are uncertain

A comparative study of void finding algorithms

بررسی مقایسهای آلگوریتمهای یافتن تهی جاها در ساختار بزرگمقیاس عالم اربابی بیدگلی، سپهر ^۱ توسلی، سعید ^۲ تولیت کاشانی، طهمورث ^۲ رحمانی، هادی ^۲ شفیعی، زینب ^۲ شقاقیان، محبوبه ^۲ شیخ بهایی، زهرا ^۲ عنبرانی، امیر ^۲ واسعی زاده، کاوه ^۲ (اعضای تیم به ترتیب الفبا) ^۱ پژوهشکده فیزیک پژوهشگاه دانشهای بنیادی ۲ دانشکده علوم دانشگاه فردوسی مشهد

چکیدہ

علی رغم گذشت نزدیک به ۳۰ سال از نخستین کشف تهی جا ها، هنوز تعریفی از آنها که مورد توافق اکثریت کیهانشناسان باشد وجود ندارد. تهی جاها بزرگترین ساختارهایی هستند که در عالم یافت می شوند و بخش مهمی از ساختار بزرگ مقیاس عالم را تشکیل می دهند که سراسر کیهان را فراگرفته است و به مراتب کمتر از میانگین عالم حاوی ماده و کهکشان هستند. برای توصیف میزان تهی جا ها در عالم و بررسی آماری خواص آنها در نقشه های انتقال به سرخ مانند توزیع بزرگی، میانگین چگالی و شکل هندسی، تعریف مشخصی از تهی جا مورد نیاز است. تعریف تهی جا وابسته به روشی است که برای یافتن آنها در نقشه های رصدی یا شبیه سازی به کار می رود و تا کنون بیش از ۱۰ روش مختلف یافتن تهی جا مطرح شده و برای بررسی نقشه های متفاوت مورد استفاده قرار گرفته است. در این طرح پژوهشی در نظر داریم روشهای موجود را مورد مطالعه قرار دهیم، آنها را باسازی کرده و مقایسه آماری نتایج آنها را در یک نقشه واحد انجام دهیم و اولین گام را برای ارائه یک تعریف جامع برداریم.

Selection effects and Corrections

Magnitude limited data → Volume limited subsamples Redshift and Evolution → k- and e-correction Moving observer, redshift artifact → Coordinate transformation Sampling incompleteness → Dilution of the samples

Selection of the volume limited samples

Selection of the volume limited samples

Void finding algorithms

Year	Author(s)	Title and source	Survey	Algorithm
1989	Geller & Huchra	Mapping the universe Science, 246, 897	CfA Some parts (8 slices)	Voids as regions with 20% of the mean density
1989	Einasto, Einasto & Gramann	Structure and formation of superclusters. IX - Self- similarity of voids MNRAS (1991) 238, 155	Galaxy and Cluster samples, Numerical Simulations	2 complementary algorithms, empty sphere and pencil beam methods
1991	Kauffmann & Fairall	Voids in the distribution of galaxies: an assessment of their significance and derivation of a void spectrum MNRAS (1991) 248, 313- 324	Two merged catalogues: (1) ZCAT with SRC and (2) CRVG with SRC	Void finder in 2D. Connected empty cells on a grid, where first square base voids are identified, and then boundary layers are added if they are empty and larger than 2/3 of the previous extension.
1996	El-Ad & Piran & da Costa	Automated Detection of Voids in Redshift Surveys MNRAS (1997), 287, 790	SSRS2 redshift survey	Similar to Hoyle & Vogeley
1998	Aikio & Maehoenen	A simple void-searching algorithm ApJ , 497, 534	Numerical Simulations	Voids as arbitrary shaped 3D objects, friends-of-friends percolation of subvoids

Void finding algorithms

Year	Author(s)	Title and source	Survey	Algorithm
2000	Mueller, Arbabi- Bidgoli, Einasto & Tucker	Voids in the Las Campanas Redschift Survey versus Cold Dark Matter Models MNRAS (2000), 318, 280	LCRS Las Campanas Redshift Survey and numerical Simulations	Kauffmann & Fairall in 2D
2002	Plionis & Basilakos	The size and shape of local voids MNRAS, 330: 399-404	PSCz	Smoothing at lengths of 5 and 10 Mpc/h, underdensity thresholds, at -68% and - 39%, Arbitrary shape
2002	Hoyle & Vogeley	VOIDS IN THE POINT SOURCE CATALOGUE SURVEY AND THE UPDATED ZWICKY CATALOG ApJ, 566:641- 651	PSCz Point Source Catalog and UZC	 Classification of galaxies as wall or field galaxies. Detection of empty cells in the distribution of wall galaxies. Growth of the maximal empty spheres. Classification of the unique voids. Enhancement of the void volume.
2002	Brown & Bhavsar	The Void Distribution Function for the LCRS Data. Bulletin of the American Astronomical Society, Vol. 34, p.1208	LCRS Las Campanas Redshift Survey	polygonal voids from point data sets

Void finding algorithms

Year	Author(s)	Title and source	Survey	Algorithm
2002	Arbabi Bidgoli & Mueller	Void Scaling and Void profiles MNRAS (2002) 332, 205	Las Campanas Redshift Survey and Numerical simulations	Kaufmann & Fairall algorithm, extended to 3D
2003	Hoyle & Vogeley	Voids in the 2dF Galaxy Redshift Survey Astro-ph/0312533	2dF Galaxy Redshift Survey (2dFGRS)	Same as Hoyle & Vogeley 2002
2003	Gottloeber, Lokas, Klypin & Hoffman	The Structure of Voids	Numerical Simulations	3D spherical voids using the minimal spanning tree
2004	Vogeley, Hoyle, Rojas & Goldberg	The Void Spectrum and Properties of Void Galaxies in the SDSS. American Astronomical Society Meeting 205, 94.04	SDSS	Objective void finding algorithm
2005	Patiri, Betancort- Rijo, Prada, Klypin & Gottloeber	Statistics of Voids in the 2dF Galaxy Redshift Survey	2dFGRS	Two complementary methods: Cell-Void finder, HB-Void finder, maximizing spheres of empty cells
2005	Padilla, Ceccarelli & Lambas	Spatial and dynamical properties of voids in a LambdaCDM universe	Numerical Simulations	Spheres with density contrast of <90% removing overlaps

Cell Algorithm (Patiri et al.2006)

- Put Galaxies into a grid
- Calculate the Distance field
- Find Local Maxima
- Find Overlaps
- Remove smaller voids with overlaps

Empty Sphere Method (Stavrev 2000)

- Put a large number of random empty circles
- Expand them to the 3 nearest Galaxies
- Find Overlaps
- Remove smaller voids with overlaps

Hoyle Vogeley Algorithm (HV 2002)

- Distinguish between Wall and Field Galaxies
- Put Galaxies into grid with size I3=d3+1.5*sigma
- Start from empty cells and grow spheres until 3 galaxie lie on them = holes
- Join holes to voids under the overlap condition

Aikio Mähönen Algorithm (AM 1998)

- Calculating the distance field
- Find Local Maxima
- Asigning empty cells to the Local maxima
- Joining these subvoids via FOF algorithm

Kaufmann Fairall (KF1991)

- Putting galaxies into a grid
- Finding maximal empty squares
- Asigning empty cells along the edges to the base voids

Cumulative Void size Distribution

Void spectrum (abundance vs size)

Statistical measures of the Void Size Distribution

Other work in progress

Voids are underdense regions in the LSS:

- Lensing effect (Weak lensing of Clusters)
- Density profiles (spherical approximation, NFW profiles of galaxies)
- Galaxy mass function (Press-Shechter formalism, excursion set theory)
- Galaxy evolution in and near voids (Void phenomenon)