# **CMB** anisotropy

ICSW-07

IPM, Tehran

(Jun 2-9, 2007)

Tarun Souradeep I.U.C.A.A, Pune, India





### **Dissected CMB Angular power spectrum**

•Low multipole : Sachs-Wolfe plateau • Moderate multipole : Acoustic "Doppler" peaks • High multipole : Damping tail





### **Ping the 'Cosmic drum'**

(Fig: Einsentein)

More technically, the Green function

### **Ripples in the different constituents**



(Einsentein et al. 2005)



## **CMB** Angular power spectrum



Fig:Hu & Dodelson 2002

### **CMB** Angular power spectrum



Fig:Hu & Dodelson 2002

#### Analysis of CMB data



#### **Estimating the Angular power spectrum**



(Souradeep 1998)



#### **Post-COBE Ground & Balloon Experiments**



#### Highlights of CMB Anisotropy Measurements (1992-2002)





## **CMB space mission : WMAP**

#### Wilkinson Microwave Anisotropy Probe

#### NASA : Launched July 2001

WMAP: 3year results announced on Mar, 2006 !

NASA/WIAAP science team

### WMAP: Full sky coverage 30% sky daily, Whole sky every 6 months



## WMAP map of CMB anisotropy



**CMB temperature** T<sub>cmb</sub> = 2.725 K -200  $\mu$  K <  $\Delta$  T < 200  $\mu$  K  $\Delta$  T<sub>rms</sub>  $\frac{1}{4}$  70 $\mu$  K





#### **WMAP-3yr: Angular power spectrum**



V band 61 GHz

#### **CMB** anisotropy signal is frequency **independent**



### **Cosmic Microwave Background**



## **WMAP: Angular power spectrum**



Multipole, I

#### Peaks of the angular power spectrum



(Saha, Jain, Souradeep Apj Lett 2006)

# **CMB** Polarization



## **CMB** Polarization

Thompson scattering of the CMB anisotropy quadrupole at the surface of last scattering generates a linear polarization pattern in the CMB.





E modes (Gradient)

> B modes (Curl)

# **Current status of CMB Spectra**



## **WMAP** map of **CMB** Polarization



NASA/WMAP science team 2006

## **WMAP-3yr: Angular power spectra** NASA/WMAP science team 100.00 10.00 { $I(I+1) C_I / 2\pi$ } $^{1/2} [\mu K]$ 1.00 0.10 0.01 1000 100 10 Multipole moment (1)

## **WMAP CMB Polarization challenge**







## Timeline of CMB experiments


# Gravitational Instability

#### Mildly Perturbed universe at z=1100

#### **Present universe at z=0**



**Cosmic matter content** 

 $\Omega_{tot}$  $\Omega_b$  $\Omega_{DM}$ Ω,  $H_0$ 



#### **Present distribution of matter**

Few Gpc.

#### **SLOAN DIGITAL SKY SURVEY (SDSS)**

#### **One little telltale bump !!**



# Acoustic Baryon oscillations in the matter correlation function !!



#### **Ripples in the different constituents**







# **Generic Inflation model**

A scalar field displaced from the minima of its potential



# **Generic Inflation model**

A scalar field displaced from the minima of its potential



# **Generation of fluctuations**





(Souradeep, Thesis 1995)

Slow – roll parameters  $4\pi d \ln H$ E  $m_{P}^{2}$ dø  $d \ln$  $d \ln a$  $4\pi d^2 \ln H$  $\mathcal{E}$  + 2

#### Scalar & Tensor perturbations

$$u_{k} \equiv a\delta\phi_{k}, \qquad v_{k} \equiv ah_{k}$$
$$u_{k}'' + \left[k^{2} - V_{S}(\eta)\right] \quad u_{k} = 0$$
$$v_{k}'' + \left[k^{2} - V_{T}(\eta)\right] \quad v_{k} = 0$$
$$V_{S} = \frac{a''}{a} - \frac{m_{eff}^{2}}{H^{2}}, \quad V_{T} = \frac{a''}{a}$$
$$\frac{m_{eff}^{2}}{H^{2}} = (\varepsilon + \delta)(\delta + 3) + \frac{\dot{\varepsilon} - \dot{\delta}}{H}$$
$$\approx \frac{4\pi}{m_{P}^{2}} \frac{d^{2} \ln H}{d\phi^{2}}$$



#### (Fig:Souradeep, Thesis 1995)

## **Early Universe in CMB**

**The Background universe** • Homogeneous & isotropic space: *Cosmological principle* • Flat (Euclidean) Geometry ... but global topology? The nature of initial/primordial perturbations Power spectrum : 'Nearly' Scale invariant /scale free form ... but are there features ? Spin characteristics: (Scalar) Density perturbation

... cosmic (Tensor) Gravity waves ?

- Type of scalar perturbation: Adiabatick-no entropy fluctuations
- Underlying statistics: Gaussian

Detecting the relic GW background : Energy scale & mechanism of inflation

## **Early Universe in CMB**

• Tensor to scalar ratio is crucial discriminant of EU scenarios





#### **Cosmic Gravity wave background**



Measuring the primordial power spectrum: Features as signatures of new physics

### **Primordial Power spectrum ?**

# CMB anisotropy has two independent aspects:

$$C_l = \int \frac{dk}{k} P(k) G_\ell(k)$$

Primordial power spectrum from Early universe

P(k)

 $G_l(k)$ Post recombination Radiation transport in a given cosmology

#### **Primordial power spectrum from WMAP** (Shafieloo & Souradeep, 2004 PRD )

(Shafieloo & Souradeep, ongoing for WMAP-3)



## **Primordial Power spectrum ?** The Grand program :

$$C_{\ell}^{TT} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{TT}(k)$$
$$C_{\ell}^{EE} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{EE}(k)$$
$$C_{\ell}^{BB} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{BB}(k)$$
$$C_{\ell}^{TE} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{TE}(k)$$

 $P_{S}(k), P_{T}(k), P_{iso}(k)$ 

Primordial power spectra from Early universe  $G_{\ell}^{TT}(k), G_{\ell}^{EE}(k), G_{\ell}^{BB}(k), G_{\ell}^{TE}(k)$ Post recombination Radiative transport kernels in a given cosmology

Beyond  $C_1$ : Measuring correlation patterns in CMB Bipolar Sph. Harmonic rep. (BiPS: Bipolar power spectra)

#### 'Anomalies' in the WMAP CMB maps

#### **North-South asymmetry**

Eriksen, et al. 2004,2006; Hansen et al. 2004 (in local power) Larson & Wandelt 2004 ..., Park 2004 (genus stat.)

**Cosmic topology** 

(Poincare Dodecahedron)

#### Special directions ("Axis of Evil")

Tegmark et al. 2004 (*I*=2,3 aligned), 2006 Copi et al. 2004 (multipole vectors), ...,2006 Land & Magueijo 2004 (cubic anomalies), ... Prunet et al., 2004 (mode coupling) Bernui et al. 2005 (separation histogram) Wiaux et al. 2006

Anisotropic, rotating cosmos

#### **Underlying patterns**

T.Jaffe et al. 2005,2006

(Bianchi VIIh)

Statistical properties are <u>not</u> invariant under rotation of the sky Breakdown of Statistical isotropy (cosmological principle)?



# SI violation, or ... Correlation patterns

# Can we measure correlation patterns?

#### the COSMIC CATCH is

# there is only one CMB sky !

Advanced Statistics of CMB  $\varDelta T(n)$ : smooth Gaussian random function on a sphere (sky map), i.e., Completely specified by the **two-point correlation** 

 $C(\hat{n}_{1}, \hat{n}_{2}) \equiv \left\langle \Delta T(\hat{n}_{1}) \Delta T(\hat{n}_{2}) \right\rangle$ Statistical isotropy implies  $C_{l}$  is sufficient  $C(\hat{n}_{1}, \hat{n}_{2}) \equiv C(\hat{n}_{1} \circ \hat{n}_{2}) = \sum_{l} \frac{2l+1}{4\pi} C_{l} P_{l}(\hat{n}_{1} \circ \hat{n}_{2})$ 

Most general, Bipolar Spherical Harmonic Expansion

 $C(n_1, n_2) \not\equiv C(n_1 \bullet n_2)$  $= \sum A_{l_1 l_2}^{LM} \{Y_{l_1}(n_1) \otimes Y_{l_2}(n_2)\}_{LM}$  $l_1 l_2 LM$ 

**Recall:** Coupling of angular momentum states  $\langle l_1 m_1 l_2 m_2 | \ell M \rangle$   $|l_1 - \ell| \leq l_2 \leq l_1 + \ell$ ,  $m_1 + m_2 + M = 0$ 

$$A_{l_{1}l_{2}}^{\ell M} = \sum_{m_{1}} \left\langle a_{l_{1}m_{1}} a_{l_{2}}^{*} {}_{M+m_{1}} \right\rangle C_{l_{1}m_{1}l_{2}}^{\ell M}$$

• Complete, Independent linear combinations of off-diagonal correlations.

**BiPS:** rotationally invariant

$$\kappa^{\ell} \equiv \sum_{M, l_1, l_2} |A_{l_1 l_2}^{\ell M}|^2 \ge 0$$

# Statistical Isotropy $\Rightarrow \kappa^{\ell} = \kappa^0 \delta_{\ell 0}$

| Spherical<br>harmonics         | Bipolar<br>spherical |
|--------------------------------|----------------------|
| $a_{lm}$                       | $A_{ll'}^{\ \ell M}$ |
| Spherical Harmonic coefficents | BiPoSH coefficents   |
| $oldsymbol{C}_l$               | $\kappa^\ell$        |
| Angular power<br>spectrum      | BiPS                 |

**Bipolar Power spectrum (BiPS) :** A Generic Measure of Statistical Anisotropy

| Spherical          | <b>Bipolar</b>               |
|--------------------|------------------------------|
| harmonics          | spherical                    |
| a <sub>lm</sub>    | harmonics $A_{ll'}^{\ell M}$ |
| Spherical Harmonic | BipoSH                       |
| Transforms         | Transforms                   |
| $oldsymbol{C}_l$   | ${oldsymbol{\kappa}}^\ell$   |
| Angular power      | <b>BiPS</b>                  |
| spectrum           | (Bipolar Power Spectrum)     |

**Bipolar Power spectrum (BiPS) :** A Generic Measure of Statistical Anisotropy

| Spherical<br>harmonics           | Bipolar<br>spherical                                           |
|----------------------------------|----------------------------------------------------------------|
| $a_{lm}$                         | ${\displaystyle \mathop{harmonics}\limits_{A_{ll'}^{\ell M}}}$ |
| Spherical Harmonic<br>Transforms | BipoSH<br>Transforms                                           |
| $C_l$                            | $\kappa^\ell$                                                  |
| Angular power<br>spectrum        | BiPS                                                           |

Statistical Isotropy i.e., NO Patterns



#### **Statistical Isotropy of CMB Anisotropy**

#### Amir Hajian thesis 2006





Hajian & Souradeep ApJ. Lett 2003, ApJ. Lett. 2005, New Astron Rev. 2006, PRD 2006,

#### Is the Universe compact?



#### Simple Toroidal space

#### ... more complicated space

Simple Torus *(Euclidean)* 

# BiPS → Spectroscopy of Cosmic topology !?!



#### MC spherical space

Compact hyperbolic space

#### **BiPS signature of a "soccer ball" universe**

(Hajian, Pogosyan, TS, Contaldi, Bond : in progress.)



#### **BiPS signature of a "soccer ball" universe**

(Hajian, Pogosyan, TS, Contaldi, Bond : in progress.)



#### **BiPS signature of Flat Torus spaces**





How Big is the Observable Universe?

Relative to the local curvature & topological scales
#### **Model free Foreground removal**

- For each frequency channel,  $i : a_{lm} = B_l a^{C}_{lm} + B_l a^{F}_{lm} + a^{n}_{lm}$
- CMB anisotropy is achromatic :  $a_{lm}^{C(i)} = \text{constant}$
- Linear combinations of maps of different frequency channels, *i*.

$$a_{lm} = \sum_{i=1}^{i=n} w_{l}^{i} \frac{a_{lm}^{i}}{B_{l}^{i}}$$

Such that CMB signal is untouched in the final map )

$$\sum_{i=1}^{i=n} w_l^i = 1$$

• Determine weights that minimize total power  $C_l = \langle a_{lm} a^*_{lm} \rangle = [W][C_l][W]^T$ 

Foreground cleaned map:  $\begin{bmatrix} e \end{bmatrix} = \begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}$ (Tegmark & Efstathiou 96, Tegmark 2003)  $\begin{bmatrix} W_l \end{bmatrix}^T = \frac{\begin{bmatrix} C_l \end{bmatrix} \begin{bmatrix} e \end{bmatrix}^T}{\begin{bmatrix} e \end{bmatrix} \begin{bmatrix} C_l \end{bmatrix} \begin{bmatrix} e \end{bmatrix}^T}$ 

#### **WMAP CMB Polarization challenge**



(ongoing: Rajib Saha, Simon Prunet, P. Jain, TS)

## **WMAP CMB Polarization challenge**

(ongoing: Rajib Saha, Simon Prunet, P. Jain, TS)



## **WMAP CMB Polarization challenge**

(ongoing: Rajib Saha, Simon Prunet, P. Jain, TS)



#### **BiPS** Spectroscopy of Cosmic topology (*Himan Mukhopadhyay*, *TS*, in progress.)

Symmetry requirements for even BiPS: Group-theoretic

1. 2n-fold symmetry

There should exist at least one plane characterized by  $\hat{n}$ such that  $R(\pi) = \gamma R(\pi) - \gamma \hat{L}(\pi)$ 

$$R_{\hat{n}}(\pi)\gamma = \gamma R_{\hat{n}}(\pi) \quad \forall \gamma \mathbf{1} \mathbf{1}$$

2. Symmetry under reflection

Let  $\begin{array}{cc} \mathbf{I} & \mathbf{I} \\ \mathbf{X} \end{array}$  and  $\begin{array}{cc} \mathbf{X} \end{array}$  be images of each other for the same plane. Then

$$\{d(x,\gamma x)\}^{\circ} \{d(x \not\in \gamma x \not\in)\} "\gamma \hat{\mathbf{I}} \Gamma$$

# Which spaces satisfy 1 &2 ?

✓ Flat compact spaces

✓ Single-action spherical compact spaces

X No hyperbolic compact spaces

Discussion with Jeff Weeks, in progress