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A decade of experimental successes

top discovery

solar and atmospherical neutrino oscillations

direct CP violation in the K system (ds) (K-long decaying into 2 pions)

CP violation in the B system (db)

evidence of an accelerated phase in the expansion of the Universe

measure of the dark energy/dark matter composition of the Universe

These results have strengthened the SM as a successful 
description of Nature ... but
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... these experimental results also concluded that there is a 
physics beyond the Standard Model.
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Bounds on (Dangerous) New Physics

Heavy Particles ➾   new interactions for SM particles

broken symmetry operators scaleΛ

B, L (QQQL)/Λ2 1013 TeV

flavor (1,2nd family), CP (d̄sd̄s)/Λ2 1000 TeV

flavor (2,3rd family) mb(s̄σµνFµνb)/Λ2 50 TeV

 At colliders, it will be difficult to find direct evidence 
of new physics in these sectors...
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New Physics in the EW sector

few TeV onlyΛ ∼

high potential for direct detection at LHC, ILC !!!
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EW “unification” and EWSB

Above ~ 100 GeV, 
electromagnetic and 
weak interactions are 
unified

Below 100 GeV, γ and 
Z behave differently

mγ < 6 × 10−17 eV

mW± = 80.425 ± .038 GeV

mZ0 = 91.1876 ± .0021 GeV
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Higgs Mechanism
Symmetry of the Lagrangian Symmetry of the Vacuum

SU(2)L × U(1)Y

H =
(

H+

H0

)
Higgs Doublet

U(1)e.m.

Vacuum Expectation Value

〈H〉 =

(

0
v
√

2

)

with v ≈ 246 GeV

Gauge boson spectrum

electrically charged bosons

electrically neutral bosons

M2

W =
1

4
g2v2

Mγ = 0

M2

Z = 1

4
(g2 + g′2)v2

Zµ = cW 3

µ − sBµ

γµ = −sW 3

µ + cBµ

c =
g

√

g2+g′2

s =
g
′

√

g2+g′2

Weak mixing angle

DµH = ∂µH −
i

2
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gW 3
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√
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µ√
2gW−

µ −gW 3
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)

H with W±
µ = 1√
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+
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Rho parameter

Consequence of an approximate global  symmetry of the Higgs sector

Custodial Symmetry

ρ ≡

M2
W

M2
Z cos2 θw

=
1
4
g2v2

1
4
(g2 + g′2)v2 g2

g2+g′2

= 1

H =
(

H+

H0

)
Higgs doublet = 4 real scalar fields

V (H) = λ

(

H
†
H −

v2

2

)2

is invariant under the rotation of the four real components

SU(2)L

SU(2)R

(

iσ
2
H

!
H

)

= Φ

2x2 matrix

Φ
†
Φ = H

†
H

(

1

1

)

V (H) = λ

4

(

trΦ†Φ − v2
)2

explicitly invariant under SU(2)L × SU(2)R

SO(4) ∼ SU(2)L × SU(2)R
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Custodial Symmetry

SU(2)L × SU(2)R → SU(2)V

Higgs vev

〈H〉 =

(

0
v
√

2

)

〈Φ〉 =
v
√

2

(

1

1

)

(

W 1

µ , W 2

µ , W 3

µ

)

transforms as a triplet

The hypercharge gauge coupling and the Yukawa couplings break the custodial SU(2)V. 

The radiative corrections will generate a (small) deviation to ρ = 1  at one loop.

(Zµ γµ)

(
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Z 0

0 0
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The SU(2)V symmetry imposes the same mass term for all W
i thus c

2
M

2

Z = M
2

W

ρ = 1

More generally:

ρ =

∑
i
(Ti(Ti + 1) − T 2

3 i
)v2

i

2T 2
3 i

v2
i

Need doublet (Ti=1/2) 
with hypercharge 1/2 (T3i=1/2) 

to get ρ = 1
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Counting the degrees of freedom
SU(2)l × U(1)y → U(1)em

3 broken gauge directions = 3 eaten Goldstone bosons

H =

(

h+

h0

)

Higgs doublet = 4 real scalar fields

H = e
iπ

a
T

a

(

0
v+h
√

2

)

V (H) = λ

(

H
†
H −

v2

2

)2

= λv
2
h

2 + λv h
3 + 1

4
λ h

4

In the unitary gauge, the     are non-physical.π
a

mass term self-couplings

3 eaten Goldstone bosons which become the 
longitudinal polarizations of the massive gauge 

bosons

One physical degree of freedom
the Higgs boson
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Higgs as a UV moderator
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Indeed a massive 
spin 1 particle has 

3 physical polarizations:

kµ = (E, 0, 0, k)

kµk
µ

= E
2
− k

2
= M

2with

Aµ = εµ e
ikµxµ

ε
µ
εµ = −1 k

µ
εµ = 0

Why do we need a Higgs ?
The W and Z masses are inconsistent with the known particle 
content!  Need more particles to soften the UV behavior of 

massive gauge bosons.

2 transverse:

1 longitudinal:

{

ε
µ

1
= (0, 1, 0, 0)

ε
µ

2
= (0, 0, 1, 0)

ε
µ
⊥

= ( k
M

, 0, 0,
E
M

) ≈ kµ

M
+ O( E

M
)

( in  the R-ξ gauge, the time-like polarization (                                    ) is arbitrarily massive and decouple )εµεµ = 1, kµεµ = M

Bad UV behavior for 
the scattering of the longitudinal 

polarizations

In Black

WL WL

WL WL

contact interaction

In White

1

Exercise 
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Why do we need a Higgs ?

Bad UV behavior for 
the scattering of the longitudinal 

polarizations

In Black

WL WL

WL WL

contact interaction

In White

1

k
µ

l
ν

p
ρ

q
σ

A ∝ g2
E4

M4

violations of perturbative unitarity around E ~ M

A = εµ
l (k)εν

l (l) ig2(2ηµρηνσ − ηµνηρσ − ηµσηνρ) ερ
l (p)εσ

l (q)
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W+

γ, Z0

W+

W− W−

s channel exchange

W+ W+

W− W−

contact interaction

3

W+

γ, Z0

W+

W− W−

s channel exchange

W+ W+

W− W−

contact interaction

3

A = g2

(

E

MW

)2

+

W+ W+

H0

W− W−

Higgs in t channel

5

W+ W+

γ, Z0

W− W−

t channel exchange

W+

H0

W+

W− W−

Higgs in s channel

4

A = −g2

(

E

MW

)2

+

Why do we need a Higgs ?

W+ W+

W− W−

contact interaction

W+ W+

γ, Z0

W− W−

t channel exchange

4

Lewellyn Smith ‘73
Dicus, Mathur ‘73

Cornwall, Levin, Tiktopoulos ‘73

The Higgs boson unitarize the W scattering 
(if its mass is below  ~ 700 GeV)

A = g2

(

MH

2MW

)2
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Unitarity Bound
dσ

dΩ
=

1

64π2s
|A|2

Lee, Quigg, Thacker ‘77
Chanowitz, Gaillard ‘85

Optical theorem:

σ =
1

s
Im (A(θ = 0))

A = 16π

∞∑

l=0

(2l + 1)Pl(cos θ)al al =
1

32π

∫ 1

−1

d(cos θ)Pl(cos θ)A

σ =
16

s

∞∑

l=0

(2l + 1)|al|
2

Partial wave amplitude decomposition:

P0(x) = 1, P1(x) = x, P2(x) = 3x2/2 − 1/2 . . .

SM witout a Higgs a0 =
g2E2

16π M2
W

E ≤ 620 GeV

Stronger Bound
2W

+
W

−

+ ZZ scattering

MH ≤ 780 GeV

Im (al) = |al|
2

|Re (al) | ≤ 1/2

SM with a Higgs MH ≤ 1.2 TeVa0 =
g2M2

H

64π M2
W

(Im (al) − 1/2)2 + (Re (al))
2 = 1/4



Ch!"ophe Grojean Beyond the Higgs Tohran, May ‘08

Physics Beyond the Higgs?

Is the Standard Model with a Higgs a UV finite theory?
i.e. valid to arbitrarily high energies

Of course, the SM  will fail around the Planck scale
but the real question is

Is there any reason to think there is new physics 
between the weak scale and the Planck scale?
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Quantum corrections of % Higgs potential
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Quantum Behavior of the Higgs4 Coupling (I)

mass : m
2

H = 2λv
2

V (h) = −

1

2
µ2h2 + 1

4
λh4

vev : v2
= µ2/λ

16π2 dλ

d lnQ
= 24λ2

− (3g′2 + 9g2
− 12y2

t
)λ + 3

8
g′4 + 3

4
g′2g2 + 9

8
g4

− 6y4
t
+ Higher loops

Small Yukawa

=

16π2
dλ

d lnQ
= 24λ2

λ increases with Q: IR-free coupling

Large mass (λ dominated RGE)

λ(Q) =
m2

H

2v2
−

3

2π2 m2
H

ln(Q/v)
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Quantum Behavior of the Higgs4 Coupling (I)

16π2 dλ

d lnQ
= 24λ2

− (3g′2 + 9g2
− 12y2

t
)λ + 3

8
g′4 + 3

4
g′2g2 + 9

8
g4

− 6y4
t
+ Higher loops

Small Yukawa

V (h) = −

1

2
µ2h2 + 1

4
λh4

No microscopic description: for              , trivial theory (λ=0)Λ → ∞

Landau poleλ

Q

v v e
4π2v2/3m2

H

m
2

H

2v
2

Large mass (λ dominated RGE)

λ(Q) =
m2

H

2v2
−

3

2π2 m2
H

ln(Q/v)

Λ ≤ v e
4π2v2/3m2

H

for mH fixed, upper bound on Λ
for Λ fixed, upper bound on mH

New physics should appear before that point to restore stability
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Quantum Behavior of the Higgs4 Coupling (II)

v e
2π2m2

H
/3y4

t
v2

16π2 dλ

d lnQ
= 24λ2

− (3g′2 + 9g2
− 12y2

t
)λ + 3

8
g′4 + 3

4
g′2g2 + 9

8
g4

− 6y4
t
+ Higher loops

Small Yukawa

Small mass (yt dominated RGE)

16π2
dλ

d lnQ
= −6y4

t

λ decreases with Q.

(Higher loops
Small Yukawa(16π2

dyt

d lnQ
= 9

2
y3

t
+ y2(Q) =

y2(Q0)

1 −

9

16π2 y2(Q0) ln Q
Q0

λ(Q) = λ0 −

3

8π2 y4
0 ln Q

Q0

1 −

9

16π2 y2
0
ln Q

Q0
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Quantum Behavior of the Higgs4 Coupling (II)

λ(Q) = λ0 −

3

8π2 y4
0 ln Q

Q0

1 −

9

16π2 y2
0
ln Q

Q0

λ(Q) = 0 for λ0 ≈
3

8π2 y4
0 ln

Q
Q0

0

v

Q

m
2

H

2v
2

λ

v e
4π2m2

H
/3y4

t
v2

➾ potential unbounded from belowλ < 0

16π2 dλ

d lnQ
= 24λ2

− (3g′2 + 9g2
− 12y2

t
)λ + 3

8
g′4 + 3

4
g′2g2 + 9

8
g4

− 6y4
t
+ Higher loops

Small Yukawa

Small mass (yt dominated RGE)

Λ ≤ v e
4π2m2

H
/3y4

t
v2

New physics should appear before that point to restore stability

for Λ fixed, lower bound on mH
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Triviality Bound

Vacuum Stability Bound

the SM is not UV complete
it is an effective theory of a more comprehensive theory

the cutoff of the SM can be rather low
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Solution to the Higgs4 Coupling Instabilities
find a symmetry such that 

λ ≡ g2

the Higgs quartic will inherit the good UV asymptotically free 
behavior of the gauge coupling

supersymmetry 

gauge-Higgs unification: the Higgs is identified as a component of 
the gauge field along some extra-dimensions.

Examples of such symmetry:
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Quantum Instability of the Higgs Mass
so far we looked only at the RG evolution of the Higgs quartic coupling (dimensionless 

parameter). The Higgs mass has a totally different behavior: it is higly dependent on the 
UV physics, which leads to the so called hierarchy and little hierarchy problems. 

= Higher loops
Smaller Yukawa+

∫
d4k

(2π)4
1

k2
− m2

∝ Λ2

∫
d4k

(2π)4
k2

(k2
− m2)2

∝ Λ2

A low-mass Higgs boson is imperiled by quantum corrections.
The hierarchy problem is a technical problem in scalar theories

m
2

H ∼ m
2

0 − (115 GeV)2
(

Λ

400 GeV

)2
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Veltman’s throat

Kolda, Murayama ‘00

(one-loop)

at two loop

The throat actually 
closes up at higher loops

m
2

H = 4m
2

t − 2m
2

W − m
2

Z ≈ (320 GeV)2

shouldn’t be taken seriously: 
in absence of any symmetry, 
there is no reason to use the 
same cutof for all particles
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Symmet!es for a natural EWSB
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How to Stabilize the Higgs Potential

spontaneously broken global symmetry massless scalar

a particle of spin s:
2s+1 polarization states

...with the only exception of a particle moving at the 
speed of light

... fewer polarization states

... but the Higgs has sizable non-derivative 
couplings

... but the Higgs is a spin 0 particle

m=0
→Spin 1 Gauge invariance no longitudinal polarization→

→Chiral symmetry only one helicity→Spin 1/2

Goldstone’s Theorem

The spin trick
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Symmetries to Stabilize a Scalar Potential

Supersymmetry

fermion ~ boson

Higher Dimensional 
Lorentz invariance

4D spin 1 4D spin 0

Aµ ∼ A5

These symmetries cannot be exact symmetry of the Nature. 
They have to be broken. We want to look for a soft breaking in 

order to preserve the stabilization of the weak scale.
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Ghost symmetry

SM particle ~ ghost

It was known since Pauli-Villars that ghosts can soften the UV 
behavior of the propagators. But they are unstable per se.

Lee-Wick in the 60’s proposed a trick to stabilize the ghosts (at 
the price of a violation of causality at the microscopic scale).

[Grinstein, O’Connell, Wise ‘07]

Other symmetries?
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Conclusions
EW interactions need a UV moderator 
to unitarize WW scattering amplitude

the SM with a light fundamental scalar cannot be (naturally) 
extended to very high energies

new particles/symmetries are expected to populate the TeV scale 
to trigger the breaking of the EW symmetry


