Fishing the Sterile Neutrinos in Ice

Arman Esmaili

(UNICAMP- Universidade Estadual de Campinas)

IPP11 – Sep 2011

In collaboration with O. L. G. Peres and F. Halzen

Outline:

A brief introduction to IceCube

Sterile neutrinos

Effect of sterile neutrinos on ATM neutrinos

Results

The Neutrino Sky

IceCube / Deep Core

- 5320 optical modules on 86 strings (+ IceTop)
- detects ~220 neutrinos and 1.7x10⁸ muons per day
- threshold 10 GeV
- angular resolution
 < 1 degree

Digital Optical Module (DOM)

Wednesday, September 7, 2011

Flavors

astro-ph: 1010.3980

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

R. Abbasi,²⁸ Y. Abdou,²² T. Abu-Zayyad,³³ J. Adams,¹⁶ J. A. Aguilar,²⁸ M. Ahlers,³² K. Andeen,²⁸ J. Auffenberg,³⁹ X. Bai,³¹ M. Baker,²⁸ S. W. Barwick,²⁴ R. Bay,⁷ J. L. Bazo Alba,⁴⁰ K. Beattie,⁸ J. J. Beatty,^{18,19} S. Bechet,¹³ J. K. Becker,¹⁰ K.-H. Becker,³⁹ M. L. Benabderrahmane,⁴⁰ S. BenZvi,²⁸ J. Berdermann,⁴⁰ P. Berghaus,²⁸ D. Berley,¹⁷ E. Bernardini,⁴⁰ D. Bertrand,¹³ D. Z. Besson,²⁶ M. Bissok,¹ E. Blaufuss,¹⁷ J. Blumenthal,¹ D. J. Boersma,¹ C. Bohm,³⁴ D. Bose,¹⁴ S. Böser,¹¹ O. Botner,³⁷ J. Braun,²⁸ S. Buitink,⁸ M. Carson,²² D. Chirkin,²⁸ B. Christy,¹⁷ J. Clem,³¹ F. Clevermann,²⁰ S. Cohen,²⁵ C. Colnard,²³ D. F. Cowen,^{36,35} M. V. D'Agostino,⁷ M. Deminer,³⁴ L. G. Demine,¹⁸ G. Demine,¹⁴ L. Deminier,²⁵ O. Demonal,¹⁴ E. Demonal,²² D. Deminet,²⁸

Overhead view of IceCube 40 string configuration

IceCube Col. (1010.3980)

$$N_{\text{events}} = \int dt \int d\Omega \int dE \cdot \Phi(E,\theta) \cdot A_{\text{eff}}^{\nu}(E,\theta)$$

The effective area is the area occupied by a hypothetical detector with the same collecting power as IceCube, but with 100% efficiency

$$N_{\text{events}} = \int dt \int d\Omega \int dE \cdot \Phi(E,\theta) \cdot A_{\text{eff}}^{\nu}(E,\theta)$$

The effective area is the area occupied by a hypothetical detector with the same collecting power as IceCube, but with 100% efficiency

$$N_{\text{events}} = \int dt \int d\Omega \int dE \cdot \Phi(E,\theta) \cdot A_{\text{eff}}^{\nu}(E,\theta)$$

flux of atmospheric neutrinos with units of
GeV⁻¹ s⁻¹ sr⁻¹ cm⁻²

The effective area is the area occupied by a hypothetical detector with the same collecting power as IceCube, but with 100% efficiency

$$N_{\text{events}} = \int dt \int d\Omega \int dE \cdot \Phi(E,\theta) \cdot A_{\text{eff}}^{\nu}(E,\theta)$$

flux of atmospheric neutrinos with units of
GeV⁻¹ s⁻¹ sr⁻¹ cm⁻²

The neutrino effective area already contain the propagation and interaction of neutrinos in the Earth

IC40 neutrino effective area

Sterile Neutrinos

Sterile means no standard model interactions

Wednesday, September 7, 2011

Oscillation Phenomenology in the presence of sterile neutrinos

Active neutrinos (v_e , v_μ , v_τ) can oscillate into sterile neutrinos (v_s)

Disappearance of active neutrinos Indirect evidence through combined fit of data

🗸 Observables:

Oscillation Phenomenology in the presence of sterile neutrinos

Active neutrinos (v_e , v_{μ} , v_{τ}) can oscillate into sterile neutrinos (v_s)

ATM Neutrinos

Oscillation Probability

Muon Effective Area

$$A_{\rm eff}^{\nu}(E_{\nu},\theta_z) = \int dE_{\mu}^i dE_{\mu}^f \operatorname{damp}(E_{\nu},\theta_z) \left[\rho \frac{d\sigma(E_{\nu},E_{\mu}^i)}{dE_{\mu}^i} \right] RR(E_{\mu}^i,E_{\mu}^f) A_{\rm eff}^{\mu}(E_{\mu}^f,\theta_z)$$

Survival Probabilities

Damping Factors

But

Systematics

- Pion to Kaon ratio
- Zenith acceptance of PMTs
- Ice properties
- CR flux, composition (IceTop)

What To Do?

Doing the same analysis for AMANDA 8 years data and waiting for IC59 data

Work in progress

Thank you!

LSND

[LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 30\,{
m m}$

 $20 \,\mathrm{MeV} \leq E \leq 200 \,\mathrm{MeV}$

MiniBooNE Neutrinos

[PRL 98 (2007) 231801; PRL 102 (2009) 101802]

MiniBooNE Antineutrinos

[PRL 103 (2009) 111801; PRL 105 (2010) 181801]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 541\,\mathrm{m}$

 $475 \,\mathrm{MeV} \leq E \lesssim 3 \,\mathrm{GeV}$

Agreement with LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal! Similar L/E but different L and $E \implies$ Oscillations!

Updated MiniBooNE $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Result

- · Updated result from previous publication
 - 5.66E20 \Rightarrow 8.58E20 protons-on-target (x1.5)
 - Reduced systematic uncertainties especially backgrounds from beam K⁺ decays
- For E > 475 MeV (>200 MeV), oscillations favored over background only (null) hypothesis at the 91.1% CL (97.6% CL)
 - Consistent with LSND but less strong than previous result (99.4%)
 - Best fit: χ² prob. = 35.5% (51%)
 Null: χ²prob. = 14.9% (10%)
- Low energy excess now more prominent for antineutrino running than previous result
 - For E< 475 MeV, excess = 38.6 ± 18.5 (For all energies, excess = 57.7 ± 28.5)
 - Neutrino and antineutrino results are now more similar.
- MiniBooNE will continue running through spring 2012 (at least) towards the request of 15E20 pot (~x2 from this update)
 - Full data set will probe LSND signal at the 2-3 sigma level

from M. Shaevitz, PANIC11, 26 July 2011

Reactor Antineutrino Anomaly

[Mention et al, arXiv:1101.2755]

Old Reactor $\bar{\nu}_e$ Fluxes

New Reactor $\bar{\nu}_e$ Fluxes

[Mueller et al, arXiv:1101.2663]

Reactor Antineutrino Anomaly

$\bar{\nu}_e$ Disappearance

New Reactor $\bar{\nu}_e$ Fluxes

[Mueller et al., arXiv:1101.2663]

[Mention et al., arXiv:1101.2755]