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Introduction

Inferential statistics provides mathematical methods to infer the
properties of a population from a randomly selected sample taken
from it. A population is an arbitrary collection of elements, a sample
just a subset of it 1

Scientific measurements are subject to the same scheme. Let us look
to few statistical problems.

1 A certain experiment detect neutrinos from reactors. It observe a
distortion from expected from theory. It is possible to describe
the distortion assuming oscillations?

2 A certain experiment is trying to look for angular distribution of
events, and determine if is compatible with the expected from
the theory or not.

3 4. A distortion is observed in the spectrum of beta decay. Is it a
background fluctuation or the signal for neutrino mass ?

1G. Bohm and G. zech, Introduction to Statistics and Data Analysis for
Physicist, DOI 10.3204/DESY-BOOK/statistics (e-book)
<http://www-library.desy.de/elbook.html>
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Phenomenology and statistics

Experimental science/phenomenology concerned with two types of
experimental measurement:

1 Measurement of a quantity : parameter estimation

2 Tests of a theory/model : hypothesis testing
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Phenomenology and statistics

Experimental science/phenomenology concerned with two types of
experimental measurement:

1 Measurement of a quantity : parameter estimation

2 Tests of a theory/model : hypothesis testing

For parameter estimation we usually have some data (a set of
measurements) and from which we want to obtain

1 The best estimate of the true parameter; the measured value

2 The best estimate of how well we have measured the parameter;
the uncertainty
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Phenomenology and statistics

For hypothesis testing we usually have some data (a set of
measurements) and one or more theoretical models, and want

1 A measure of how consistent our data are with the model; a
probability

2 Which model best describes our data; a relative probability

To address the above questions we need to use and understand
statistical techniques

Orlando Luis Goulart Peres Phenomenology point of view of data analysis: statistics



unicampLogo

Phenomenology and statistics

For hypothesis testing we usually have some data (a set of
measurements) and one or more theoretical models, and want

1 A measure of how consistent our data are with the model; a
probability

2 Which model best describes our data; a relative probability

To address the above questions we need to use and understand
statistical techniques

Orlando Luis Goulart Peres Phenomenology point of view of data analysis: statistics



unicampLogo

Probabilities: How to Define Probability?

In Statistics: probability, a basic concept which may be taken as
undefinable, expressing in some way a degree of belief, or as the
limiting frequency in an infinite random series. Both approaches have
their difficulties and the most convenient axiomatization of probability
theory is a matter of personal taste. Fortunately both lead to much
the same calculus of probability.
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Probabilities: How to Define Probability?

In the frequentist statistics1, sometimes also called classical statistics,
the probability of an event, the possible outcome of an experiment, is
defined as the frequency with which it occurs in the limit of an infinite
number of repetitions of the exper iment. If in throwing dice the result
five occurs with frequency 1/6 in an infinite number of trials, the
probability to obtain five is defined to be 1/6. Examples

1 Poisson distribution
P (n, µ) = e−µ

µn

n!

2 Gaussian distribution

P (x, µ) =
1√
2πσ

e
−

1

2

(
x− µ
σ

)2

1Disclaimer: In this talk I will not mention Bayesian statistics
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Probabilities: How to Define Probability?

Mean and Variance

Mean : µ =< x >=

∫
xP (x)dx

Mean of Squares < x2 >=

∫
x2P (x)dx

Variance Var(x) = σ2 ≡< (x− µ)2 >=

∫
(x− µ)2P (x)dx

µ and σ describe the mean and the width of probability density
function (PDF).
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Central Limit Theorem

It can be proved that for large µ that a Poisson distribution
tends to a Gaussian.This is one example of a more general
theorem, the Central Limit Theorem:

If n random variables,xi,each distributed according to any PDF,

are combined then the sum y =
∑
i

xiwill have a PDF which

, for large n, tends to a Gaussian.

For now we are going to use Gaussian distribution

P (x, µ) =
1√
2πσ

e
−

1

2

(
x− µ
σ

)2

where the width (variance) is given by Var(x)=σ.
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Gaussian distribution

It is natural to introduce χ2(x)

χ2 =
(x− µ)2

σ2
P (x, µ, σ) =

1√
2πσ

e−χ
2/2

Fraction of events

68.3% |x− µ| < 1σ χ2 < 1

95.5% |x− µ| < 2σ χ2 < 4

99.7% |x− µ| < 3σ χ2 < 9

6× 10−6 (x− µ) > 5σ χ2 > 25

(1)
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Gaussian distribution

Fraction of events

68.3% |x− µ| < 1σ χ2 < 1

95.5% |x− µ| < 2σ χ2 < 4

99.7% |x− µ| < 3σ χ2 < 9

6× 10−6 (x− µ) > 5σ χ2 > 25

(1)

The region defined by |x− µ| < 1σ, or 1σ region is called a
confidence interval for a given confidence level (C.L.)
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2-D dimensional Gaussian distribution I

If we assume two independent measurements x and y (ignoring
correlations)

P (x, y) = P (x)P (y) =
1√

2πσx
e−(x−x)

2)/(2σ2
x)

1√
2πσy

e−(y−y)
2/(2σ2

y)

=
1

2πσxσy
e−(1/2)[(x−x)

2)/(σ2
x)+(y−y)2/(σ2

y)]

that describe two measurements with x± σx and y ± σy. We
can rewrite as a χ2,

P (x, y) =
1√

2πσxσy
e−χ

2(x,y)/2 (2)

where

χ2(x, y) =
(x− x)2

σ2
x

+
(y − y)2

σ2
y

(3)
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2D- dimensional Gaussian distribution II

2D dimensional curve for Gaussian distribution

Inner (Outer) curve is for 1σ (2σ) :
We ask the question what is the allowed region for the
parameter y or what is the allowed region for parameter x?
The answer is very easy:
68.3% events inside ±1σx independently of y
68.3% events inside ±1σy independently of x
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2D- dimensional Gaussian distribution II

Another question that we can answer is what is 68 % joint
probability for the parameters x and y ?

Consider the contours of χ2 =
(x− < x >)2

σ2x
+

(y− < y >)2

σ2y
.

Then χ2 = 1 correspond to contour of PDF that fails to have
e−1/2 of the peak (remember prob=∼ e−χ2/2)
We should take into account that now we have a
multidimensional surface:

Orlando Luis Goulart Peres Phenomenology point of view of data analysis: statistics



unicampLogo

Types of errors in a measurement

• Statistics errors:Typically σstat =
√
N

how many electrons were detected at fixed time
tossing a coin
• Systematic errors:
energy calibration
imperfect theory prediction
• Blunders errors
bugs in the analysis/errors in Monte Carlo code/forgot to include a
particular background

Statistical errors shown only.
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Suppose that x and y have two source of errors1: statistical :(sx and
sy with no correlations and systematics (cx and cy with full correlation.
This mean that x = x0 ± sx ± cx and y = y0 ± sy ± cy.
Then the error matrices sum up

σ2 =

(
s2x 0
0 s2y

)
+

(
c2x cxcy
cxcy c2y

)
≡
(

σ2
x ρσxσy

ρσxσy σ2
y

)
where we define σ2

x = s2x + c2x, σ2
y = s2y + c2y, ρ =

cxcy
sxsy

and the total

error is correlated.

1E. Lisi, Neutrino physics tutorials
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As an example of the general case, we have statistical and
systematic errors, in the atmospheric neutrino, all points have
independent statistical errors, (σ2

stat)ij = δijσ
exp
i σexpj but due the

theoretical neutrino flux have the same source, then the predictions
are correlated. We can write (σ2

syste)ij = ρtheoij σtheoi σtheoj , where ρij
should be found or given by some experimentalist. The total error of
each point is described by
σ2
ij = (σ2

stat)ij + (σ2
syste)ij = δijσ

exp
i σexpj + ρtheoij σtheoi σtheoj : total errors

are correlated.
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The general 2D dimensional distribution

In general we can have a correlation, ρ between the errors of
variable x and y,

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure : From negative correlation to positive correlation,

P (x, y) =
1

2π
√

1− ρ2σxσy
e−χ

2/2

χ2 = − 1

(1− ρ2)

[
(x− x)2

σ2x
+

(y − y)2

σ2y
− 2ρ(x− x)(y − y)

σxσy

]
If we define the error Matrix,

M =

(
< x2 > < xy >
< xy > < y2 >

)
=

(
σ2x ρσxσy

ρσxσy σ2y

)
then we can define the probability as , where (we need to
compute the N-dimensional inverse matrix M−1).

P (x, y) =
1

2π|M|
e−(xTM−1x)/2
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The general 2D dimensional distribution

P (x, y) =
1

2π
√

1− ρ2σxσy
e−χ

2/2

χ2 = − 1

(1− ρ2)

[
(x− x)2

σ2x
+

(y − y)2

σ2y
− 2ρ(x− x)(y − y)

σxσy

]
If we define the error Matrix,

M =

(
< x2 > < xy >
< xy > < y2 >

)
=

(
σ2x ρσxσy

ρσxσy σ2y

)
then we can define the probability as , where (we need to
compute the N-dimensional inverse matrix M−1).

P (x, y) =
1

2π|M|
e−(xTM−1x)/2

For general multi-dimensional

P (x1, x2, ..., xn) =
1

(2π)n/2|M|1/2
e−(xTM−1x)/2
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The χ2 analysis

Given some data (event counts, distributions) and a particular
theoretical model
are the data consistent with the model:
• hypothesis testing
• goodness of fit
in the context of the model, what are our best estimates of its
parameters:
•fitting
In both cases, need a measure of consistency of data with our
model. Start with a discussion of χ2
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The χ2 analysis

• Suppose we measure a parameter, x± σ, which a theorist
says should have the value µ.
Within this simple model, we can write down the prior
probability of obtaining the value x± σ, given the prediction

P (data,prediction) =
1√
2πσ

e
−

1

2

(
x− µ
σ

)2

• To express the consistency of the data,
ask the question if the model is correct what is the probability of
obtaining result at least far as far from the prediction as the
observed value.This is simply the fraction of the area under the
Gaussian with |x− µ| > |xobs − µ|
• The degree of consistence is

P (χ2 > χ2
obs) whereχ2 =

(
x− µ
σ

)2
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The χ2 analysis

For n dimensional probability

P (χ2, n) ∝
(
χ2
)(n−2)/2

e−χ
2/2

And for any number of variables we have

P (χ2 > χ2
obs) =

∫∞
(χ2)obs

P (χ2, n)dχ2

Notice the dependence on n, as we see before.
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The χ2 analysis

Recipe for fitting data with a model
Build χ2 = XT (σ2)−1X,

X =


xtheo1 (~p)− xexp1

xtheo2 (~p)− xexp2

.......
xtheoN (~p)− xexpN


where ~p is a parameter space of the model (dimension Np 6= N ). For
example to fit KamLand data, we can use a two-generation oscillation
mechanism, that have two parameters and KamLand have 20 points.
Then N=20, and Np=2.
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The χ2 analysis

Find
χ2
min = min

(
χ2(~p)

)
~p

at ~p = ~p0, where ~p0 is the point that minimize this function.
Check if
χ2
min ∼ N −Np ±

√
2 ∗ (N −Np),

where N-Np is the degrees of freedom for test of hypothesis.
If the previous condition it is not satisfied the model is either
wrong (χ2

min too high) ou too good and suspect (χ2
min too low).

If χ2
min is reasonable, try to estimate parameters around best fit

~p0 (parameter estimation)
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The χ2 analysis

Parameter estimation
Suppose you want ±1σ ranges for each parameter p1, p2, p3, ...
independetenly of the others (marginalizing the others)
Then
• Build ∆χ2 = χ2(~p)− χ2

min, Np dimensional manifold
• Project ∆χ2 onto axis pi, get p0i − σ−p < p0 < p0i + σ+p .
In practice the projection operation mean to impose that
∆χ2

i = min (χ2(~p)− χ2
min) = 1

pj 6= pi
where we marginalize all the other variables

Orlando Luis Goulart Peres Phenomenology point of view of data analysis: statistics



unicampLogo

The χ2 analysis
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1M. C. Gonzalez-Garcia et al, 1209.3023
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The χ2 analysis
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The χ2 analysis

•We can justified this procedure (∆χ2 projections) as far the
allowed manifold is a simply connected volume. For
disconnected regions, there is not a definitive consensus!!
Multiple domains of ~p are keep, waiting for some future
experiments broke the degeneracy of solutions.
The joint probability of ~p sometimes is also interesting to quote,
for example the allowed region on sin2 2θ and ∆m2 parameter
space.
In this case the volume defined by ∆χ2=constant, the constant
change with the dimension of parameter space Np.
C.L.(%) Np = 1 Np = 2 Np = 3

68.27 1.00 2.30 3.53
90 2.71 4.61 6.25
95 3.84 5.99 7.82
99 6.63 9.21 11.34

99.73 9.00 11.83 14.16
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The χ2 analysis
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The χ2 analysis
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Orlando Luis Goulart Peres Phenomenology point of view of data analysis: statistics



unicampLogo

The χ2 analysis

All cases showed so far are the good cases, all experiments
combined show the same parameter region. But not always the case,
sometimes we are faced with contradictory experiments!! What we
should do?
A χ2 analysis1 of solar and atmospheric experiments with one extra
sterile neutrino, the so called 2+2 model can be parametrized as ηs
the fraction of sterile neutrino in the oscillation.

0 0.2 0.4 0.6 0.8 1

η
s

0

10

20

30

40

χ
− 2

min

∆χ
2

sol

∆χ
2

atm

χ
− 2

1T. Schwetz and M. Maltoni, hep-ph/0304176v2
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The χ2 analysis
A intermediate case is that one experiment see a positive signal for
neutrino oscillation and another dont see any signal of neutrino
oscillation. BEWARE, we should combine the experiments and test if

we have a good solution.
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Exercise: KamLand region
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• Step 1: Define your χ2, what are your input and theoretical
prediction?
• Step 2: Fit curve with

P (να → να) = 1− sin2 (2θ) sin2

(
1.27

∆m2

(eV)2
L/Km

E/GeV

)
• Assume Average distance 180 km. See Figure 2.3 in
http://kamland.lbl.gov/Dissertations/
DetwilerJason-DoctorThesis.pdf
• Find the allowed region for sin2 (2θ) and ∆m2 parameters..
• There is a difference between your result and the numbers from
literature?
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