Phenomenology of sterile neutrinos

O. L. G. Peres¹

¹Instituto de Fisica Gleb Wataghin UNICAMP

26 September 2012

Orlando Luis Goulart Peres Phenomenology of sterile neutrinos

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Standard scenario for neutrino oscillations

 Most (all data) can be understand if we assume that Neutrino flavor states are linear combination of mass eigenstates. a Mixing matrix, named Pontecorvo, Maki-Nakagawa-Sakata (PMNS).

For 3 flavor neutrinos we have a 3×3 matrix,

Standard scenario for neutrino oscillations

• In different experiments, it was proved that neutrinos oscillate, $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - \sin^{2} (2\theta) \sin^{2} \left(1.27 \frac{\Delta m^{2}}{(eV)^{2}} \frac{L/Km}{E/GeV} \right)$

→ Ξ → < Ξ →</p>

 Why are three generations of neutrinos? Why not, 4,5,... Invisible width of boson Z^0 indicate three neutrinos! No room for neutrinos with left-handed couplings! But we can think in extra neutrinos with right-handed couplings.:sterile neutrinos: neutrinos with any couplings with gauge bosons and only appear by oscillation. Also from the experimental point of view, there a bunch of anomalies that did not fit in the standard view of three light neutrinos: LSND anomaly and related The reactor neutrino anomaly The Gallium anomaly The Dark radiation The absence of up-turn in solar neutrino data

・ロト ・ 理 ト ・ ヨ ト ・

• LSND experiment (2001)¹: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} L \sim 30 \text{m} E_{\nu} \sim 20 - 200 \text{ MeV}$

 $\begin{array}{l} \Delta m^2_{LSND} \sim 1 \; {\rm eV} \;^2 \gtrsim \Delta m^2_{21}, \Delta m^2_{31} \\ \Delta m^2_{21} = 2.5 \times 10^{-3} \; {\rm eV}^2, \Delta m^2_{31} = 7 \times 10^{-5} \; {\rm eV}^2 \end{array}$

¹LSND, PRD 64 (2001) 112007, hep-ex/0104049]

Orlando Luis Goulart Peres

Phenomenology of sterile neutrinos

• to explain LSND experiment require: $\frac{L}{E_{\nu}} \sim \frac{1m}{MeV} \sim \frac{1Km}{GeV}$ that it is not compatible with the results from other oscillation experiment: $\frac{L}{E_{\nu}} > \sim \frac{10^3 Km}{GeV}$.

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2 \left(2\theta\right) \sin^2 \left(1.27 \frac{\Delta m}{(\text{eV})^2} \frac{\text{L/Rm}}{\text{E/GeV}}\right)$$

A possible explanation is to have $\Delta m^2_{LSND}~\sim~$ 1eV 2

• MINI-BOONE experiment (2011) (L ~ 541m $0.475 < E_{\nu} < 3 \text{ GeV}$) have a small oscillation signal (2 σ) in anti-neutrino $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and no signal in neutrino oscillation $\nu_{\mu} \rightarrow \nu_{e}$

Orlando Luis Goulart Peres

Phenomenology of sterile neutrinos

ъ

• The Mini-Boone show the neutrino/anti-neutrino (2012)¹ report new results that indicate a 3.8 sigma effect!!

¹1207.4809v2: one month ago!!

Orlando Luis Goulart Peres

Phenomenology of sterile neutrinos

프 🕨 🗆 프

• If we compare the probabilities of three experients: LSND, Mini-Boone neutrino and Mini-Boone anti-neutrino (the three have the same L/E_{ν} but different L and different E_{ν} .)

프 🕨 🗆 프

• Reactor $\bar{\nu}_e$ anomaly:

Recent reevaluation of expected reactor $\bar{\nu}_e$ flux is 3.5% higher than previous prediction: Mueller et al. arXiv:1101.2663, confirmed by P. Huber arXiv:1106.0687.

• Reactor anomaly: With new fluxes there is a deficit of $\bar{\nu}_e$

• Reactor $\bar{\nu}_e$ anomaly II:

프 아 씨 프 아

э

 Galium ν_e anomaly: Calibration measurements for the GALLEX and SAGE solar neutrino detectors using intense radioactive sources (⁵1Cr and ³⁷Ar) Neutrino detection via ν_e+⁷¹ Ga →⁷¹Ge +e⁻.

Result: Measurements consistently lower than expectation

Framework: 3+1 model

御 とくほとくほとう

₹ 990

 90% CL limit on the ν oscillation probabilities from the negative searches at short baseline experiments.

Expt	Beam	Channel	Limit (90%)	$\Delta m^2_{\sf min}~({\sf eV}^2)$
E776	BNL	$\nu_{\mu} \rightarrow \nu_{e}$	$P_{e\mu} < 1.5 \times 10^{-3}$	0.075
E734	BNL	$\nu_{\mu} \rightarrow \nu_{e}$	$P_{e\mu} < 1.6 \times 10^{-3}$	0.4
KARMEN	Oxford	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$P_{e\mu} < 6.5 \times 10^{-4}$	0.05
E531	FNAL	$\nu_{\mu} \rightarrow \nu_{\tau}$	$P_{\mu\tau} < 2.5 \times 10^{-3}$	0.9
CCFR/	FNAL	$\nu_{\mu} \rightarrow \nu_{e}$	$P_{\mu e} < 8 \times 10^{-4}$	1.6
NUTEV		$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$P_{\mu e} < 5.5 \times 10^{-4}$	2.4
		$\nu_{\mu} \rightarrow \nu_{\tau}$	$P_{\mu\tau} < 4 \times 10^{-3}$	1.6
		$\nu_e \rightarrow \nu_\tau$	$P_{e\tau} < 0.1$	20.0
Chorus	CERN	$\nu_{\mu} \rightarrow \nu_{\tau}$	$P_{\mu\tau} < 3.4 \times 10^{-4}$	0.6
		$\nu_e \rightarrow \nu_\tau$	$\dot{P_{e\tau}} < 2.6 \times 10^{-2}$	7.5
Nomad	CERN	$\nu_{\mu} \rightarrow \nu_{\tau}$	$P_{\mu\tau} < 1.7 \times 10^{-4}$	0.7
		$\nu_e \rightarrow \nu_\tau$	$P_{e\tau} < 7.5 \times 10^{-3}$	5.9
		$\nu_{\mu} \rightarrow \nu_{e}$	$P_{\mu e} < 6 \times 10^{-4}$	0.4

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• The mixing matrix for the 3+1 mass scheme

$$\mathbf{U}_{\text{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The 3+1 properties

For very short baselines, we can write down the survival probability as

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(1.27\frac{\Delta m^2}{(eV)^2}\frac{L/Km}{E/GeV}\right)$$

where $\sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha4}|^2(1-|U_{\alpha4}|^2)$ and the conversion probability as

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta_{\alpha\beta}) \sin^2\left(1.27 \frac{\Delta m^2}{(\text{eV})^2} \frac{\text{L/Km}}{\text{E/GeV}}\right)$$

where $\sin^2(2\theta_{\alpha\beta}) = 4|U_{\alpha4}|^2|U_{\beta4}|^2$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

The 3+1 properties

From $\sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha4}|^2(1-|U_{\alpha4}|^2)$ and $\sin^2(2\theta_{\alpha\beta}) = 4|U_{\alpha4}|^2|U_{\beta4}|^2$ and because all parameters $|U_{\alpha4}|^2$ are small, we can write down $\sin^2(2\theta_{\mu\mu}) \sim 4|U_{\mu4}|^2$, and $\sin^2(2\theta_{\mu e}) = 4|U_{\mu4}|^2|U_{e4}|^2$. This allow us to relate the survival amplitude with the conversion amplitude ¹:

$$\sin^2(2\theta_{\mu e}) = \frac{1}{4}\sin^2(2\theta_{\mu\mu})\sin^2(2\theta_{ee})$$

To have a sizeable $\sin^2(2\theta_{\mu e})$ we should also have sizeable $\sin^2(2\theta_{\mu\mu}), \sin^2(2\theta_{ee})$. if we assume that $\sin^2(2\theta_{\mu\mu}) \sim \sin^2(2\theta_{ee}) \sim \epsilon^2$, where ϵ is a small parameter then

 $\sin^2(2\theta_{\mu e}) \sim \epsilon^4/4 \ll 1!!$

¹O. L. G. P. and A. Y. .Smirnov, Nucl. Phys. B **599**, 3 (2001) [hep-ph/0011054].

Combined analysis of sterile 3+1 scenario

Orlando Luis Goulart Peres

Phenomenology of sterile neutrinos

ъ

- A 3+1 scenario in principle can fit now both LSND and MINI-BOONE neutrino e anti-neutrino.
- Still the model have problems coinciling the disappearence constrains and appearence signal: $\sin^2(2\theta_{\mu e}) \sim \epsilon^4/4$ and $\sin^2(2\theta_{\mu\mu}) \sim \sin^2(2\theta_{ee}) \sim \epsilon^2$.
- We need to confirm the reactor neutrino anomaly, new experiments are been planned.
- A positive signal ~10% for $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_e \rightarrow \nu_e$ disappearence is expected, new short-baseline experiments?, KATRIN? ² Can we search for that? ³

³K. N. Abazajian *et al.*, arXiv:1204.5379 [hep-ph].

²See O.I.G.P. talk at workshop

Fishing Sterile neutrino in ICE-(CUBE of SUGAR)

The complete evolution equation for sterile neutrinos (3+1 mass scheme) is given by The evolution equations for neutrinos in the flavor basis are

$$\frac{d}{dr}\nu_f = \left[U_4 \frac{M^2}{2E_\nu} U_4^{\dagger} + A\right]\nu_f,$$

where $\nu_f = (\nu_e \nu_\mu \nu_\tau \nu_s)^T$ and E_ν is the neutrino energy. We get from Reference⁴ the mixing matrix for the 3+1 case

$$U_4 = \mathbf{R^{34}}(\theta_{34}) \widetilde{\mathbf{R}}^{\mathbf{24}}(\theta_{24}, \delta_2) \widetilde{\mathbf{R}}^{\mathbf{14}}(\theta_{14}, \delta_1)$$
$$\mathbf{R^{23}}(\theta_{23}) \widetilde{\mathbf{R}}^{\mathbf{13}}(\theta_{13}, \delta) \mathbf{R^{12}}(\theta_{12})$$

The mixing matrix is parameterized by twelve real parameters: the six mixing angles $\theta_{12}, \theta_{13}, \theta_{23}, \theta_{14}, \theta_{24}, \theta_{34}$, the three Dirac phases $\delta, \delta_1, \delta_2$.

⁴A. de Gouvea and J. Jenkins, Phys. Rev. D **78**, 053003 (2008) arXiv:0804.3627 [hep-ph]].

Fishing Sterile neutrino in ICE-(CUBE of SUGAR)

where
$$U_{4\times4} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}_{4\times4} \begin{pmatrix} U_{3\times3} & 0 \\ 0 & I \end{pmatrix}$$
,
and $A_{CC} = \sqrt{2}G_f n_e$ and $A_{NC} = \frac{1}{\sqrt{2}}G_f n_n$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consequences for sterile neutrino phenomenology:

- Distortion of neutrino probabilities: $|U_{\mu4}|^2 < 0.02$ from DeepCore sensitivity for zenith distortions⁴
- $|U_{e4}|^2 \leq 0.05$ from solar neutrino constrains ⁵
- η_s parameter: interplay of active-active ($\eta_s = 0$) and active-sterile conversion ($\eta_s = 1$).
- Atmospheric (MSW effects due s-neutrino), and solar experiments put constrains on this parameter. $\eta_s < 0.40$
- NC disappearence channel: $\nu_{\alpha} \rightarrow \nu_s$: NC solar neutrino data and from MINOS NC data: $\eta_s < 0.22 \rightarrow 0.40!!$

⁴S. Razzaque and A. Y. .Smirnov, Phys. Rev. D 85, 093010 (2012)

⁵A. Palazzo, Phys. Rev. D **85**, 077301 (2012)

Fishing Sterile neutrino in ICE-(CUBE of SUGAR)

Consequences for sterile neutrino phenomenology:

• New MSW effects, resonant conditions are:4

$$\frac{\Delta m_{41}^2}{2E_{\nu}} = -\cos 2\theta_{eff} V_{nc} \tag{1}$$

for the usual 3×3 neutrinos case, we have

$$\frac{\Delta m_{31}^2}{2E_\nu} = \cos 2\theta_{13} V_{cc} \tag{2}$$

for anti-neutrinos we shift the signal $V_{nc} \rightarrow V_{nc}$

⁴O. Yasuda, hep-ph/0102166; H. Nunokawa, O. L. G. P. and R. Z. Funchal, Phys. Lett. B **562**, 279 (2003) S. Choubey, JHEP **0712**, 014 (2007) ; S. Razzaque and A. Y. .Smirnov, JHEP **1107**, 084 (2011) V. Barger, Y. Gao and D. Marfatia, Phys. Rev. D **85**, 011302 (2012)

V. Barger, Y. Gao and D. Marfatia, Phys. Rev. D 85, 011302 (2012) A. Esmaili, F. Halzen and O. L. G. P., arXiv:1206.6903 [hep-ph].

Orlando Luis Goulart Peres Phenomenology of sterile neutrinos

Consequences for sterile neutrino phenomenology:

• New MSW effects, resonant conditions are neutrinos with INVERTED HIERARCHY or anti-neutrinos with NORMAL HIERARCHY

$$E_{\nu} \sim (2-5) \mathrm{TeV} \left(- \frac{\Delta m_{41}^2}{1eV^2} \right)$$

for the usual 3×3 neutrinos case, we have

$$E_{\nu} \sim (2-7) \text{GeV}\left(\frac{\Delta m_{31}^2}{1eV^2}\right)$$

(日本) (日本) (日本)

Fishing Sterile neutrino in ICE-(CUBE of SUGAR)

see A. Esmaili talk at Workshop

Orlando Luis Goulart Peres Phenomenology of sterile neutrinos

3+2 model

ヘロト 人間 とくほとく ほとう

• One additional mass scale:

$$\left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 & 0 & 0 \\ 0 & 0 & \Delta m_{31}^2 & 0 & 0 \\ 0 & 0 & 0 & \Delta m_{41}^2 & 0 \\ 0 & 0 & 0 & 0 & \Delta m_{51}^2 \end{array}\right)$$

• This rule did not work $\sin^2(2\theta_{\mu e})\sim\epsilon^4/4$ and $\sin^2(2\theta_{\mu\mu})\sim\sin^2(2\theta_{ee})\sim\epsilon^2$ due the presence of two scales: Δm^2_{41} and Δm^2_{51} .

個 とく ヨ とく ヨ とう

1

• Parameter Goodness of fit:4

The model should individually each set of data points and not only the global data:

• solar, atmospheric, reactor experiments, short baseline experiments, longbaseline experiments

Define the probability $PG = P(\chi^2_{PG}, ndf_{PG})$ with

$$\chi^2_{PG} = \chi^2_{min,combined} - \sum_d (\chi^2_d)_{min}$$

and $ndf_{PG} = \sum_{d} N_{p_d} - N_{p_{combined}}$ with N_{p_d} the number of indepedent parameters per data-set and N_p the number of indepedent parameters in the global fit.

Example: for solar analysis, mass differences greater then Δm_{41}^2 are averaged out. For short baseline experiments, $\Delta m_{21,31}^2 \rightarrow 0$.

⁴T. Schwetz and M. Maltoni, hep-ph/0304176v2

- Using the Parameter Goodness of fit test the 3+2 model is much better then 3+1 model.
- A 3+2 scenario in principle can fit now both LSND and MINI-BOONE neutrino e anti-neutrino.

In the past (over a week ago) the 3+1 model cannot explain the lack of signal of oscillations in neutrino and the signal of oscillations in anti-neutrino) and we need the 3+2 model.

• New CP phases and a new mass scale, $\Delta m^2_{61} \sim 19 {\rm eV^2}.$: conflicts with cosmology?

• Still the model have MINOR problems coinciling the disappearence constrains and appearence signal: but disapearence and appearence point to different sets

- We need to confirm the reactor neutrino anomaly,.
- A positive signal 10% for $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{e} \rightarrow \nu_{e}$ disappearence is expected, new short-baseline experiments?, KATRIN?

<ロ> (四) (四) (三) (三) (三) (三)

Data from the cosmic microwave background (CMB) and large-scale structure (LSS) show that is necessary to have neutrinos, and including South pole telescope (SPT) and Atacama Cosmology Telescope (ACT) data show the existence of 4 light degree of freedom:

 $N_s = 1.12^{+0.86}_{-0.74}$ at 95% c.l. ⁵

This have been called dark radiation, because the component of this radiation need to vey light, $\sum m_{\nu} < 0.6$ eV. Then if it is sterile neutrino it should be much lighter then the LSND mass scale.

⁵M. Archidiacono, E. Calabrese and A. Melchiorri, Phys. Rev. D **84**, 123008 (2011)