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Angular momentum problem

1. Asymptotically flat metrics in the Bondi gauge
(xA = (θ, ϕ)),

ds2 = − du2 − 2dudr + r2qABdxAdxB + 2m(u, x)
r du2

+ rCAB(u, x)dxAdxB + DBCABdudxA

CABCAB

16r2 dudr + (4NA(u, x)
3 − 1

8DA(CCBCCB))dudxA

r
+ ... .

2. The functions m(u, xA), NA(u, xA) and CAB are the
mass aspect, the angular momentum aspect and the
shear tensor.
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Angular momentum problem

1. An element ξ of the BMS algebra is a vector field (ξ)
allowed by the Bondi gauge condition and asymptotic
form of the metric

ξu = f(x) + u
2D.Y,

ξA = YA.

2. f(x) is a “supertranslation” and YAs are Lorentz
generators. Shear tensor CAB, changes as
CAB − (2DADB − qABD2)f.
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Electric shear
1. Shear tensor is a symmetric traceless tensor and has two

polarity,
D2(D2 + 2)C(u, x) = DADBCAB(u, x),

C(u, x) is called “electric shear”.
2. The electric shear can be expanded in terms of spherical

harmonics,
C(u, x) =

∞∑
l=0

Cl(u)Yl

Then,

D2(D2 + 2)C(u, x) =
∞∑
l=2

l(l2 − 1)(l + 2)Cl(u)Yl.

3.

δfC = f , δYC = YADAC − 1
2D.YC.



Angular
Momentum Flux
Non-Invariance in

Asymptotically
Flat Spacetimes

Electric shear
1. Shear tensor is a symmetric traceless tensor and has two

polarity,
D2(D2 + 2)C(u, x) = DADBCAB(u, x),

C(u, x) is called “electric shear”.
2. The electric shear can be expanded in terms of spherical

harmonics,
C(u, x) =

∞∑
l=0

Cl(u)Yl

Then,

D2(D2 + 2)C(u, x) =
∞∑
l=2

l(l2 − 1)(l + 2)Cl(u)Yl.

3.

δfC = f , δYC = YADAC − 1
2D.YC.



Angular
Momentum Flux
Non-Invariance in

Asymptotically
Flat Spacetimes

Electric shear

1. Equation of motion for the mass aspect,

∆m(Θ) = 1
4D2(D2 + 2)∆C(Θ) −

∫ +∞

−∞
duTuu(u, Θ)

2. Again one can see the first two modes Cl=0(u), Cl=1(u)
are absent, even more they do not appear at all in the
asymptotic metric and hence their time dependence is
completely arbitrary even if the initial value of all
harmonics of C is given at u = −∞.
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Invariant Lorentz charge

With the help of electric shear we can construct an
intrinsic Lorentz charge,

JY(u)= 1
8πG

∫
S2 d2YA

[
NA(u,xA)−3m(u,xA)DAC(u,xA)−DAm(u,xA)C(u,xA)

]
,

JY(u)=Jcan
Y (u)−jY[m(u),C(u)].

This charge is covariant and supertranslation
invariant,in fact it is a bit too much invariant!

This is an intrinsic charge!
jY term can be written as,

jY[m(u),C(u)]= 1
4πG

∫
S2 mδYC=− 1

4πG
∫

S2 CδYm.
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Energy

1. Needless to say there is no problem with the energy
(flux) because it is already supertranslation invariant,

E(u) = 1
4πG

∫
d2Θ

√
hm(u, Θ),

∆m(Θ) = 1
4D2(D2 + 2)∆C(Θ) −

∫ +∞

−∞
duTuu(u, Θ).
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Intrinsic charge

δY δf ∆JZ − δf δY ∆JZ = δ[Y,f] ∆JZ.

1. LHS is zero therefore RHS must be zero as well.

2. On the other hand, [Y, f] is a supertranslation BUT not
a proper one,

δ[Y,f] = YADAf − 1
2D.Yf,

δ[Y,f] also generate a solid translation even if f is a
proper supertranslation.
A proper supertranslation in a frame is an improper
supertranslation in a boosted frame.

3. A covariant supertranslation invariant charge must be
an intrinsic charge.
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On physical meaning of the Cl=0, Cl=1

1. An independent, covariant prescription for the l = 0, 1
components of the electric shear is necessary to define
the flux.

2. Also we can not set Cl=0, Cl=1 to zero as it is
inconsistent with the Lorentz transformation,

(δ−1/2
Y C)|l=0,1 ̸= 0.

3. The question is how to fix these coefficients in a
covariant way.
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1. The prescription should not introduce an additional
arbitrariness in the flux.

2. In the initial center of mass rest frame (CMRF) which is
defined by the condition
m−

1,m ≡
∫

d2Θ
√

hY1mm(−∞, Θ) = 0,

J−
Ȳ − jȲ[m−, C−] = 0, for all ȲA = boost.

These conditions remove the arbitrariness in choosing
the origin of the coordinates.

3m−
0

4πG C−
1m = J−

ȲA − jȲA [m−, C−|l>1].

4. The final form of the charge is

J−
Y = J−

Y − jY[m−, C−]. (1)
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Angular momentum flux
To define a flux we also have to fix the Cl=0, Cl=1 at
u = ∞. There are many possibilities, two simple choices
are:
i) Set C+|l≤1 = C−|l≤1.
ii) Solve J+

Ỹ − jỸ[m+, C+] = 0, where ỸA is defined by
Lorentz-transforming pure boosts defined in the
final center of mass rest frame.

2. Prescription i simply corresponds to measuring J+
Y with

respect to the initial CMRF.
3. By construction both J±

Y are invariant under
supertranslations so we can compute them by changing
coordinates in the non-radiative far past and far future
regions to set C±

AB = 0.

∆JY = JY(+∞)|C+|l>1=0 − JY(−∞)|C−|l>1=0.
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Angular momentum flux

4. There are arguments showing that hAB + O(1/r2) is the
frame where the Bondi charge reduces to the ADM
charge. Therefore the flux is the canonical charge
measured after a gravitational scattering in a “round
metric” frame minus the initial canonical charge, also
measured in a “round metric” frame.
This procedure “forgets” the initial frame-fixing.

5. Prescription i includes a term due to the motion of the
final CMRF, namely ∆J⃗ = ∆J⃗intrinsic + a⃗ × ∆P⃗, with a⃗
the displacement of the origin of the final CMRF with
respect to the initial CMRF. Prescription ii instead gives
∆J⃗ = ∆J⃗intrinsic. The difference between the two
prescriptions amounts to a term proportional to ∆P⃗, i.e.
the change of the center of mass momentum due to
gravitational radiation.
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Summary

• Supertranslation and covariance makes the charge
invariant under solid translations.

• l = 0, 1 modes of the electrical shear do not appear in
the asymptotic metric nor they are fixed by EOM.
However they are essential for covariance.

• We fix these coefficients by fixing the origin of
coordinates.

• To calculate flux we also need to know l = 0, 1 modes
at the far future. Two important prescriptions are, first
measuring the initial and final charge with respect to
the initial CMRF or measuring the final charge with
respect to the final CMRF.

• The second one coincides with the ADM flux.


