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Outline

• General relativity in the presence of boundaries

• Focus on causal (timelike and null) boundaries

• Work out boundary theories, symmetries and associated
energy momentum tensor

• Hydrodynamics description

• Summary and outlook
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GR and Boundary symmetries

Presence of boundary in spacetime brings in boundary d.o.fs

• Any boundary: Asymptotic boundary or any arbitrary
codimensiton one surface in spacetime

• Surface charges: In diffeomorphic invariance boundary
theories, non-trivial diffeomorphic transformations results in
associated surface charges.

• Boundary vs. Bulk: We focus on the boundary instead of the
usual viewpoint which focuses on the bulk.

Constructing the bulk they using the boundary theory, generalizing
AdS/CFT, hopefully constructing a quantum theory at the boundary

2



GR and Boundary symmetries

General features of GR

• A generally covariant theory

• Physical observables: They are defined through local
deffeomorphism invariant quantities,

• Diffeomorphisms: any two metric tensors related by
diffeomorphisms are physically equivalent,

xµ → xµ + ξµ(x), gµν → gµν + δgµν , δgµν = ∇µξν +∇νξµ
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GR and Boundary symmetries

General structure of EoM and d.o.fs

• Metric: In D dimensional spacetime, it has D(D + 1)/2
components, D(D − 3)/2 propagating modes, D deffeos,

• Field equations: D(D+1)/2 field equations, Gµν = 8πGTµν ,
D(D-1)/2 are second order differential equations,
D constraints

• Bulk solutions: Solutions can be fully specified by boundary
and/or initial data, which in the most general case involves 2D
functions over codimension one boundary,
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Causal boundary

We take Gaussian-null-type coordinate system as the
metric parametrization

ds2 = gµνdxµdxν = −Vdv2 + ηdvdr +R2(dϕ+ Udv)2 (1)

V, U, R are functions of v, r, ϕ, while η > 0 is a function of v, ϕ

We take boundary Cr to be at constant r (with arbitrary r) surface
and restrict ourselves to V ≥ 0 surface
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Causal boundary

A causal boundary at arbitrary r = r0
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Figure 1: Depiction of a causal boundary at an arbitrary, we want to
formulate physics in the outside r ≥ r0 region and excise r ≤ r0
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Causal boundary

Boundary metric: The induced metric on Cr is then,

dσ2 := γabdxadxb = −Vdv2 +R2 (dϕ+ Udv)2
, xa = {v, ϕ}. (2)

Let s denote the vector field perpendicular to Cr,

sµdxµ :=
η√
V

dr , sµ∂µ =
1√
V

(
∂v +

V
η
∂r − U∂ϕ

)
, (3)

The induced metric γµν can be written in terms of unit timelike
vector field tµ and spacelike vector field kµ,

γµν = −tµtν + kµkν , (4)

where
kµdxµ := R (dϕ+ Udv) , kµ∂µ =

1
R

∂ϕ , (5)

tµdxµ := −
√

V
(

dv − η

Vdr
)
, tµ∂µ =

1√
V
(∂v − U∂ϕ) . (6)
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Causal boundary in terms of null vectors

The two spacelike and timelike vector fields s, t may be written in
terms of linear combinations of two normalized null vector fields l,n,

t = 1√
V

l + 1
2
√

V n , s = 1√
V

l − 1
2
√

V n, (7a)

l =
√

V
2 (t + s) , n =

1√
V
(t − s), (7b)

with l2 = n2 = 0, and l · n = −1, explicitly,

lµxµ = −1
2Vv + η , nµxµ = −v ,

lµ∂µ = ∂v +
V
2η ∂r − U∂ϕ , nµ∂µ = −1

η
∂r .

(8)

Equation (7) also makes it clear that ln(
√

V) may be viewed as a
boost speed which acts on l,n like scaling by

√
V, 1/

√
V, respectively.
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Causal boundary

Cr

AdS3 b’dry

Portion of AdS3 bounded by a generic timelike boundary Cr. We
formulate physics in the shaded region. The wiggles on Cr are to
highlight the boundary degrees of freedom, where the
Brown-York-type charges T ab are canonical conjugates of boundary
metric components γab.

9



Causal boundary

Geometrical invariantes of the boundary generating spacelike vector
field s along the boundary:

θs := qαβ∇αsβ =
1√
VR

(
DvR+

V
η
∂rR

)
,

ωs := −kαtβ∇αsβ = − 1
2R

(
R2

η
∂rU +

∂ϕV
V − ∂ϕη

η

)
,

κt := tβtα∇αsβ =
1

2
√

V

(
DvV

V − ∂rV
η

− 2Dvη

η

)
.

(9)

By Dv we denote the derivatives along the v on Cr,

Dv := ∂v − LU, (10)
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Causal boundary

Similarly, for the two null vectors l,n the expansions θl, θn, the
angular velocity, ωl, and non-affinity parameter, κ, are given by

κ := −lαnβ∇αlβ =
Dvη

η
+

∂rV
2η ,

ωl := −kµnν∇µlν = − 1
2R

(
−∂ϕη

η
+

R2

η
∂rU

)
,

θl := qαβ∇αlβ =
DvR
R

+
V
2η

∂rR
R

,

θn := qαβ∇αnβ = −1
η

∂rR
R

.

(11)
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Field equations in 3D gravity

Field equations for Einstein-Λ theory are

Eµν = Gµν + Λgµν = 0 . (12)

Straightforward computations show that one can solve for the
r-dependence of the 3 functions in the metric (1) (recall that η is
r-independent) obtained to be arXiv:2202.12129:

U = U +
1

λR
∂ϕη

η
+

Υ

2λR2 , R = Ω+ r η λ , (13a)

V =
1
λ2

(
−ΛR2 −M+

Υ2

4R2 − 2R
η

Dv(ηλ) +
Υ

R
∂ϕη

η

)
, (13b)

where Ω, λ, η,Υ,U ,M are six functions of v, ϕ and Dv is defined in
(10).
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Field equations in 3D gravity

Einstein equations yield two constraints/relations among the 6
codimension one functions of v, ϕ:

Dv(R2ωs) +R∂ϕ(
√

Vκt) +Rθs∂ϕ
√

V = 0 , (14a)

Dv(Rθs) + κtDvR+
1√
V
∂ϕ(Vωs) = 0 . (14b)

• The other equations Ess = 0, Eab = 0 are readily satisfied once
(13) and (14) hold

• Equations (14) consist of two first-order time (v) derivative
equations, which are linear in the variables θs, ωs, and κt

• They are completely defined at the boundary Cr

• The solution space is completely specified by 4 functions over Cr
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Causal boundary stress tensor

We start with extrinsic curvature of constant r surfaces Kµν ,

Kµν :=
1
2γ

α
µγ

β
νLsγαβ = ∇(µsν) − s(µs · ∇sν) , (15)

where γα
µ = gανγµν .

Constructing causal boundary Brown-York energy-momentum tensor
as follows

T µν =
1

8πG

(
Kµν − K γµν+

1
ℓ
γµν

)
, ℓ2 = −1/Λ, (16)

• is by construction a symmetric tensor, T µνsν = 0
• T µν is defined on Cr
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Causal boundary stress tensor

It can hence be decomposed as

T µν =− E (tµtν + kµkν) + 2J k(µtν) + 1
2T (−tµtν + kµkν) , (17)

where we defined

E := − 1
16πG (θs + κt) , T :=

1
8πG

(
κt − θs+

2
ℓ

)
, J :=

ωs
8πG ,

(18)
where T is the trace of the causal boundary Brown-York
energy-momentum tensor and θs, ωs, κt are defined in (9).
T µν has only 3 non-zero components along the constant r surface and
will be denoted by T ab = γa

µγ
b
νT µν .
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Hydrodynamics description at finite distance: AdS3 case

Field equations take the inspiring form,

DbT ab = 0 , (19)

where Da is metric connection compatible with boundary metric γab.
It suggests a hydrodynamics description with the following dictionary:
1) tµ plays the role of fluid velocity field,
2)E corresponds to the fluid energy density,
3) J kµ related to the heat current (momentum flow), and
4) T kµkν is the corresponding dissipative tensor which is transverse
to the fluid velocity direction.
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Symplectic form

• Symplectic form then is

ΩC =

∫
Cr

d2x
[
−1

2δ(
√
−γ T ab) ∧ δγab + ∂aδYra

◦ [g; δg]
]
. (20)

in the absence of Y◦, the off-shell symplectic form consists of
three causal boundary Brown-York charges T ab which are
canonically conjugate to the boundary metric γab

This 3 + 3 (γab, T ab) decomposition of off-shell configuration space is
different than 2 + 2 (λ−1,M̂;U , Υ̂) plus 1 + 1 (Ω,Π) decomposition
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Hydrodynamics description: Features

• These equations relate 2 out of 6 functions and hence the
solution phase space is governed by 4 functions over Cr,

• T ab is not traceless and the hydrodynamic system is not a
conformal one.

• For any r at the boundary
• All 3+3 modes in the configuration space appear in our

hydrodynamic description on generic Cr,
• At r → ∞ limit, where the boundary approaches the causal

boundary of spacetime, we recover a conformal hydrodynamic
description which only involves 2 + 2 codimension 1 modes,

18



Conformal invariance of hydrodynamic desceription

The metric of the form (1), with (13), is preserved by the infinitesimal
diffeomorphism generated by the vector field

ξ = T∂v +

[
Z − r

2 W − Υ

2ηλ2R
∂ϕT − 1

η2λ
∂ϕ

(
η∂ϕT
λ

)]
∂r

+

(
Y +

∂ϕT
λR

)
∂ϕ ,

(21)

Weyl scaling on Cr, γab → W2 γab, is not a part of our boundary
symmetries at generic r and hence the effective relativistic
hydrodynamic description at the boundary is not a conformal one

• In general T ab is divergence-free, but it is not traceless,

• In r → ∞ limit, where the boundary approaches the causal
boundary of spacetime,

We recover a conformal hydrodynamic description at infinity
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Other hydrodynamics frames

Consider two boundary metrics related by a Weyl scaling:

γab → γ̃ab = W−2 γab , (22)

where W is a generic function on the spacetime and a scalar in the
γ̃–frame.
One can verify that,

√
−γ T ab δγab =

√
−γ̃ T̃ ab δγ̃ab + 2

√
−γ̃ T̃ δW

W

δ(
√
−γ T ab) ∧ δγab = δ(

√
−γ̃ T̃ ab) ∧ δγ̃ab + 2 δ(

√
−γ̃ T̃ ) ∧ δW

W

(23)

where

T̃ ab = W4T ab, T̃ := γ̃abT̃ ab = W2γabT ab := W2T . (24)

We raise and lower indices for tilde-quantities by γ̃ab and γ̃ab
respectively, as such Tab = T̃ab
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Other hydrodynamics frames

The divergence-free condition (19) can be written as:

∇̃bT̃ ab =
1
2 T ∇̃aW2 (25)

where ∇̃a is the covariant derivative w.r.t. γ̃ab.
That is, in a generic Weyl-frame neither the divergence nor the trace
of the energy-momentum tensor is zero.
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Divergence-free frames

The above is true for an arbitrary Weyl factor W. One may choose
W = f(T ), where f is an arbitrary function of T . Then, one can
construct a new divergence-free energy-momentum tensor Tab

∇̃aTab = 0, Tab := T̃ ab − 1
2 γ̃

abF(T ) (26)

F′ = 2T ff′, T = γ̃abTab =

∫ T
f2T , (27)

where prime denotes derivative w.r.t. the argument.
One may also show,

δ(
√
−γ T ab) ∧ δγab = δ(

√
−γ̃ Tab) ∧ δγ̃ab . (28a)

Weyl scalling by W = f(T ) is a canonical transformation both off-shell
and on-shell.
That is, the hydrodynamic description is not unique and since f(T ) is
an arbitrary function, there are infinitely many such descriptions
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Asymptotic boundary hydrodynamics

The hydrodynamic description on Cr at a generic r, becomes more
interesting when we take r → ∞ and take C∞ to be the usual AdS3
causal (asymptotic) boundary

• At the asymptotic causal boundary we have an emergent
conformal symmetry,

• This leads to a conformally invariant hydrodynamical description,

• In the hydrodynamic description, due to anomaly in either of Diff
or Weyl parts of the symmetry algebra, the boundary stress
tensor can be made either divergence-free or traceless, not both
simultaneously.
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Null boundary hydrodynamics

Requiring that Cr at finite r is a null surface that amounts to having
V = 0 at the position of the boundary. Requiring the null boundary
N to be located at r = 0 yields

V(r = 0) = 0 ⇒ M = −ΛΩ2+
Υ2

4Ω2 −
2Ω
η

Dv(ηλ)+
Υ

Ω

∂ϕη

η
. (29)

- Null surface solution space is described by three codimension 1
functions,
- One generator drops out (Z), we arrive at following equations which
yields the desired null field equations

D̄v(Ω
2ω̄l)− Ω∂ϕκ̄ = 0 , (30a)

D̄vθ̄l + (θ̄l − κ̄)θ̄l = 0 , (30b)

where κ̄, ω̄l, θ̄l are obtained from κ, ωl, θl at r = 0.
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Null boundary hydrodynamics

To construct the hydrodynamic description at null boundaries we
start from the definition of the shape operator or Weingarten map,
2109.11567, as

Ta
b := − 1

8πG (Wa
b −W δa

b ) . (31)

If the null boundary is spanned by null vector la and the spatial
vector ka, the Carrollian energy-momentum tensor is given by

Ta
b =

1
8πG

[
κ̄ k̄ak̄b − ω̄l l̄ak̄b − θ̄l l̄an̄b

]
, T := Ta

a =
1

8πG (θ̄l + κ̄) .

(32)
where θ̄l is the expansion of the null surface, κ̄ is its non-affinity
parameter and ω̄l is its angular velocity.

DaTa
b = Pν

bPα
µ∇αTµ

ν . (33)

The boundary theory is a Carrollian theory,
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Flat limit

r

AdS3 b’dry

ℓ→∞
====⇒

i+

i0

i−

Cr

I−

I+

Hydrodynamic description for flat case will obtain when Λ → 0 limit
of what we had in the AdS3 case
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Large r limit

r

AdS3 b’dry

Since we have, r-dependence, we may take r → ∞ limit and obtain
asymptotic AdS3 hydrodynamics description.

σ2|r→∞ = r2P2
[
− 1
ℓ2λ2 v2 + (ϕ+ Uv)2

]
+O(r) , P(v, ϕ) := ηλ, (34)

- Recovering Weyl symmetry at infinity: T,Y,W generate Weyl⊕Diff
at C∞
- Hydrodynamic description at infinity only involves 2 of the 4 charges
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Flat limit in null case

i+

Cr
i0

i−

I−

I+

At ℓ → ∞ limit, an asymptotic Carrollian hydrodynamics description.

σ2|r→∞ = P2r2 (ϕ+ Uv)2
+O(r) := r2q̂µνxµxν +O(r) , (35)

with kernel l̂µ∂µ = ∂v − U∂ϕ , q̂µν l̂µ = 0 .
- Unlike the generic null boundary, we have 4 generators, no V = 0
condition (29).
- We can construct two energy-momentum tensors, a trace-free and a
divergent-free, with appropriate large ℓ limit,
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Takeaway lessons so far

Boundaries bring in “boundary degrees of freedom”

• Solution space was obtained for r-dependence and the
corresponding symplectic form for a time-like boundary in AdS3
gravity,

• Boundary d.o.f may be labeled by surface charges associated with
nontrivial diffeos,

• They accept a hydrodynamicd description at finite r and
asymptotic,

• There is a regular limit for hydrodynamics at flat case,
• The description has been developed for null boundaries in 3d,
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Outlook

• Extension to higher dimensions. Study the role of bulk
propagating modes,

• Probably a different hydrodynamics description (More deeper
similarities/correspondence to fluid constitutes and dynamics), in
progress

• Going deeper into the fluid/gravity correspondence, extending
the paradigm for more general spacetimes,
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Our main motivation

Understanding the boundary theory for gravity
and their effective descriptions

may help us to understand the nature of gravity
and its quantization
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Questions and Comments?

Yellow, Cherry, Orange, 1947, Mark Rothko
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