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» Timelike entanglement “entropy” is a new complez-valued
measure of information

» An early motivation: Concerns from dS/CFT;
Is it possible to understand about the entanglement
structure of theories dual to dS geometries via weak
rotation of well-known results in AdS?

» The content of this talk:

» A reminder: Definition of pseudo entanglement

> Definition of timelike entanglement in QFT

» TEE is an example of pseudo entanglement

» Holographic prescription to calculate TEE (v.1)

» A comment about: TEE in AdS < EE in dS/CFT
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Pseudo Entanglement Entropy

» Entanglement entropy is defined for a single state [¢))

v

Pseudo Entropy is defined for two states [¢); and [¢),

WL e [90) (]
(¥ ) (ol 1)

» Pseudo thI'Opy [Nakata-Takayanagi-Taki-Tamaoka-Wei ’20]:

S(TA) =-Try [TAlogTA] , 74 =Trg [nglh]

ijng naturally arises after post-selection measurements

v

v

Weak value [Aharonov-Albert-Vaidman ’88]

(¥110al2)
(Y1]12)

Start with |¢)1), perform a measurement O 4, discard all
outcomes except those which the final state is [¢2)
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Holographic Pseudo Entanglement Entropy
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Holographic Pseudo Entanglement Entropy

What is v4 in CFT?

Z="Tr [7'1/"90] = (@YX |~ YA

[¥) = O'(22)0" (x3)[0)
(ol = {0[O(21)

[Nakata-Takayanagi-Taki-Tamaoka-Wei *20)]
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-n

51(4”) =7 logTr[p%] ,133% 51(4") =54

v

In Euclidean formalism we have to calculate

Tl [ Doe -2,

v

The key point [Calabrese-Cardy 04]

C in presence of Or,) < R,

v

For A: a single interval
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Replica Method

» It is much easier to work with p™ rather than log p
» Replica method [Callan-Wilczek 94]
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51(4”) =7 logTr[p%] ,133% 51(4") =54

v

In Euclidean formalism we have to calculate

Tl [ Doe -2,

v

The key point [Calabrese-Cardy 04]

C in presence of Or,) < R,

v

For A: a single interval

_ c 1
Zp o< {opon)c  ,  An=— (n - —)
» This leads to 12 n
c 1
Z Lay 6(n3)
Te[p] = 22 (_)
[Pia] 27 p
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Timelike EE in QFT I: Replica Method

» Reminder: For spacelike regions
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Timelike EE in QFT I: Replica Method

» Reminder: For spacelike regions

1
1-n

2A,,
b log ¢
1=n V(zp-2q)? - (tr - tg)?
» EE is given by

Sa =50 = Elog [\/(A;p)‘z - (At)z‘]
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Timelike EE in QFT I: Replica Method

» Reminder: For spacelike regions

547 = - log{on(P)7u(Q))

1

2A
el
-n V@p—2Q)? = (tp—tg)?

» EE is given by

3

€

S, = 51(41) _ Elog[\/ (Ax)? - (At)Z]

» Continue to (Ax)? — (At)? <0, for pure timelike region Tp

(Ty _ € To cm.
SA —glog?+€z
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Timelike EE in QFT I: Replica Method

» Finite Size: CFT on a circle (R),
For a pure timelike region Ty

T R . ©T, ime
Sg ) = log [ sin —] —
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Timelike EE in QFT I: Replica Method

» Finite Size: CFT on a circle (R),
For a pure timelike region Ty

(M _ ¢
A3
» Finite Temperature: CFT at temperature (1/3),
For a pure timelike region Ty
T .
SEXT) = glog [ﬁ sinh %] + e

TE 6
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Timelike EE in QFT II: Wick Rotation of Coordinates

» Consider a free scalar theory with x ~z + R
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Timelike EE in QFT II: Wick Rotation of Coordinates
» Consider a free scalar theory with x ~z + R

5:% [ dtdz[(260)* - (0.0)? - m*6?]

the partition function is given by Zy = [ D¢ e

» Consider t: spatial direction, T' = —ix: real-time

R “Space”
g t

(~——— “Euclidean time”
t
Rotation A
A m) R
~—
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Timelike EE in QFT II: Wick Rotation of Coordinates

» The “Hamiltonian” reads
H= [dt [72+ (016)2-m?¢?]
where m = -0, ¢ is the canonical momentum such that

[6(t), m(t')] = id(t - t')
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Timelike EE in QFT II: Wick Rotation of Coordinates
» The “Hamiltonian” reads
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where m = -0, ¢ is the canonical momentum such that
[6(t), m(t')] = id(t - t')
» In this formulation (H =iH)
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Timelike EE in QFT II: Wick Rotation of Coordinates
» The “Hamiltonian” reads
—1
H==" [ e+ (00)*-m*¢?]
where m = -0, ¢ is the canonical momentum such that
[6(t), m(t")] =id0(t -t)

» In this formulation (H =iH)

Zy="Tr [e_RH] =Tr [eiRH]
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Timelike EE in QFT II: Wick Rotation of Coordinates
» The “Hamiltonian” reads
—1
H==" [ e+ (00)*-m*¢?]
where m = -0, ¢ is the canonical momentum such that
[6(t), m(t")] =id0(t -t)

» In this formulation (H =iH)

Zy="Tr [e_RH] =Tr [eiRH]

» Prescription: With g - —iR and m - —im, we can find
TEE from EE
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Timelike EE in QFT II: Wick Rotation of Coordinates

» Finite temperature EE to finite size TEE

Sa :—log[@s nh” 0] B:q_)_%R
BS €E—>—1€
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S0 = Grog | sin 2|+ T
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Timelike EE in QFT II: Wick Rotation of Coordinates

» Finite temperature EE to finite size TEE

Sa :—log[@s nh” 0] B:q_)_%R
BS €E—>—1€

(Ty _ ¢ R . «T), e

S0 = Grog | sin 2|+ T

» Take t ~t -4 and R — oo to define finite temperature TEE
» Finite size EE to finite temperature TEE

Rg X0 Bs——iR
Sa= log [— sin ( )]
Rg

3 TE E—>—ie

R T e
s _ 1 [ h—O] e
N og — sin 7 .
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TEE as Pseudo Entanglement Entropy

> The reduced density matrix corresponding to TEE was
NOT hermitian (remember H =iH)
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TEE as Pseudo Entanglement Entropy

> The reduced density matrix corresponding to TEE was
NOT hermitian (remember H =iH)

» More explicitly consider the following purification

Z e+i(R+i6)En/2|n>1|n>2

1
U) =
) VZ(8) 7

* 1 —i(R-1 n
) = 2(5)26 BB ) 1n)s

;
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TEE as Pseudo Entanglement Entropy

> The reduced density matrix corresponding to TEE was
NOT hermitian (remember H =iH)

» More explicitly consider the following purification

1 . .
=75 S e EHDE 2y, 1),
1 —i(R-i
o) = S e ETDE ), ),

;

Z(0) n
» Tracing over one copy
Toro |0 ) (U] = ei(R+i6)H
TEE is naturally expressed in terms of pseudo entropy
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Numerical Method

» Spectrum of 74 — TEE

» How to read the spectrum of 747

(O4) =Tra[7404]

v

In free theories Wick’s theorem — A unique way to real
the spectrum of 74

v

All we need are the two-point functions

v

Similar to the standard formulation of KG theory
H=—i f 'y dls Q. af aye

v

In 2d case (2 = VK2 —m?) the structure of Trq [7404]

EeiRQk nf(n)
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Numerical Method: Finite Size

» The relevant correlation functions (similarly for IT;y)

Oy =Tr [e (R+ 6)H¢(t)¢(t’)] = %m coth (%) k=t
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Numerical Method: Finite Size
» The relevant correlation functions (similarly for IT;y)

(I)tt,Eﬂ[e(R+5)H¢(t)¢(t,)]: o oth(( 2) k)ek(t )

R/6=100, e=1, m=10"

8.8

8.6
- 8.4 ar
= — 0.335 Log[2°° Sin[ 2.2 0 2]1+7.23
@ 8.2 T
Py — 0.333 Log[MSm[” °11+7 59
X g0

— 0335 Log[5°s|n[ o D 1+7.91

To/R
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Numerical Method: Finite Size
» The relevant correlation functions (similarly for IT;y)

i(R+i6)H dk i R+i0) QU \ ket

R/6=100, e=1, m=10"

nTO

= — 0.335 Log[2°°S|n[ 2]1+7.23

@

5 —— 0.333 Log[MSm["TD 1+7.59
— 0335 Log[5°S|n["T° 1+7.91
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» Strong numerical evidence for the imaginary part
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Numerical Method: Finite Size
» The relevant correlation functions (similarly for IT;y)

i(R+i6) 1] dk i R+i0) QU \ ket

R/6=100, e=1, m=10"

nro

= — 0.335 Log[2°°S|n[ 2]1+7.23

;5 Te

e — 0333 Log[MSm[" °11+7 59
— 0.335 Log[5°S|n["T° 1+7.91

0.0 0.2 0.4 0.6 0.8
To/R

» Strong numerical evidence for the imaginary part

» Numerical results also agree in the finite temperature case
12 / 22
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Holographic Timelike EE in Pure AdS;

» Poincare AdSs
dz? — dt? + dz?

ds? = 3
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with continuation Xy — i1y

t =22+ (Ip/2)?
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Holographic Timelike EE in Pure AdS;

» Poincare AdSs
dz? — dt? + dz?

ds? = 3
z

)

with continuation Xy — i1y

t =22+ (Ip/2)?

t T=T
t=To| % ixe T[
T=T4/2
/A/" X =0 A
I \ = T=Ty/2
t=—To, ﬁlf/re z
., ..-"‘ 0
| e
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Holographic Timelike EE in Pure AdS;

» Poincare AdSs
dz? — dt? + dz?

ds? = 3
z

)

with continuation Xy — i1y
t =22+ (1p/2)?
| —

t=To % ke

A X T=T /2
/' A
—/\ T=-T /2

0,
t=—To, ﬁ’&e z
\ ., ..".‘ 0
|,
| N

» Timelike part comes from the homology condition

(T) _ ¢ To) ¢ .
SA = glog(?)‘f‘gﬂ'l
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Is there an Extremization Prescription?

» Can a union of timelike and spacelike geodesics result from
an extremizing prescription?
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Is there an Extremization Prescription?

v

Due to symmetry I' 4 is expected to be on

ds® = —(dif* + cos® 7dt?), (0 <7< 7/2)

v

For compactified ¢ this is a —ds§2 with imaginary length

v

Extremizing w.r.t the points on 77 = 0 leads to the geodesic
along the boundary of S? (with length i7)

v

= the real part is the sum of geodesics with fixed endpoints

v

Prescription summary:
1. Construct candidates of I 4 from a union of spacelike and
timelike geodesics such that 0T'4 = 0A
2. (Considering Wick rotated geometry for the timelike
geodesics), require all variations of the joining points to be
stationary
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BTZ (non-rotating)

)2
ds = dudv . (1-uv) r2dg?

T (1+uv)?  (1+uv)?
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BTZ (non-rotating)

dudv (1-uv)? 5 ,
ds® = - d
§ (1 +uv)? " (1+uv)2r+ ¢

Solving the geodesic equation u”(1 + uv) + 2u'(u - u'v) =0
» How extremization works?

(a1, —%) subregion bdy
(ag, —é) subregion bdy
(s, % ) future singularity

(-g, —% past singularity
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BTZ (non-rotating)

dudv (1-uww)? 5 o
ds® = - d
§ (1 +uv)? " (1+u1})2r+ ¢

Solving the geodesic equation u”(1 + uv) + 2u'(u - u'v) =0
» How extremization works?

(a1, —%) subregion bdy
(ag, —é) subregion bdy
(s, % ) future singularity

(-g, —% past singularity

» Fxistence of timelike geodesic = s=gq

> Extremizing w.r.t. s = s? = ajas
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BTZ (non-rotating)

» Putting three pieces together

S(T) log (

T

Ali Mollabashi

£ smh( (Ty - Tl)))

—im

6

Timelike EE
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Necessity of TEE in TFD States

» Can we fully understand the entanglement structure of
TFD states without TEE?

Ali Mollabashi Timelike EE 18 / 22



Necessity of TEE in TFD States

» Can we fully understand the entanglement structure of
TFD states without TEE?

» How to interpret: o, in CFTy and 5,, in CFT ?

Ali Mollabashi Timelike EE

18 / 22



Necessity of TEE in TFD States

» Can we fully understand the entanglement structure of
TFD states without TEE?

» How to interpret: o, in CFTy and 5,, in CFT ?

Ali Mollabashi Timelike EE 18 / 22



Necessity of TEE in TFD States

» Can we fully understand the entanglement structure of
TFD states without TEE?

» How to interpret: o, in CFTy and 5,, in CFT ?

A

» There is no spacelike A that o, and &,, are at A The

Hilbert space is constructed from fields on disconnected
circles cannot be interpreted as EE!

Ali Mollabashi Timelike EE

18 / 22



Necessity of TEE in TFD States

» Can we fully understand the entanglement structure of
TFD states without TEE?

» How to interpret: o, in CFTy and 5,, in CFT ?

A

» There is no spacelike A that o, and &,, are at A The

Hilbert space is constructed from fields on disconnected
circles cannot be interpreted as EE!

» This configuration should be interpreted as TEE!
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dS / CFT [Strominger ’01]

» Is timelike EE related to entropy in field theories dual to de
Sitter spacetime?
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dS / CFT [Strominger ’01]

>

Is timelike EE related to entropy in field theories dual to de
Sitter spacetime?

dS / CFT is conjectured for the theory leaving on S? part of
ds space ds? = R3g(~dr? + cosh® 7 dQ3)

and a Euclidean CFTy
The dictionary analogous to the GKPW
[Gubser-Klebanov-Polyakov, Witten "98|

Zcrr[po] = Vas[¢o] = f¢| ) Do elasloly,
T=Too — PO

Conjecture: CFT is non-unitary with cqg = icaqs (2d)
[Maldacena ’02]

non-unitarity — (| # |¢)Jr
p =) (1] is a transition matrix
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Holographic Pseudo Entropy in dS3/CFT,
» In global dSg

ds? = R3(~dr? + cosh® 7(dt?, + cos® tgdh?)), (r>0)

with the Euclidean part corresponding to the initial state

ds® = R3q(dr + cos® 75 (dt?, + cos? tgdh?)), (0 <1 < 7).

we consider A at 7., on tg =0
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Holographic Pseudo Entropy in dS3/CFT,
» In global dSg

ds? = R3(~dr? + cosh® 7(dt?, + cos® tgdh?)), (t>0)
with the Euclidean part corresponding to the initial state
ds® = R3q(dr + cos® 75 (dt?, + cos? tgdh?)), (0 <1 < 7).

we consider A at 7., on tg =0

e .

. AN

NI

(a) Global dS3 (b) Poincaré dS;
» Extrimization of timelike and spacelike parts gives
(P) .Cds 2sin % s .
S, =-i—-log + , (€qs =2e7)
3 €4S 6
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Relation with TEE

» Starting from Euclidean AdS

. Sa=A0
A 3Og

ds? = Rids dz? + dt% + da? CAdS ( To )

22 €AdS
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Relation with TEE
» Starting from Euclidean AdS

dz? + dt2 + da? T
ds? = R o TR T Sy = SAds 1og(—° )

22 ’ 3 €AdS

The following “double Wick rotation” gives the same result
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22 ’ 3 €AdS
The following “double Wick rotation” gives the same result

1. z=—in, Raqs = —iRas (€ads = —i€ds, CAds = —iCqs)
2. tE =4t (T() - ZT())

AdS;
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Summary / Conclusions

» TEE defined by the Wick rotation of

1. the replica trick results
2. the coordinates

lead to the same results in CFTy
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Summary / Conclusions

v

TEE defined by the Wick rotation of
1. the replica trick results

2. the coordinates

lead to the same results in CFTy

Using def. 2, the analytic continuation and the direct
(numerical) calculation using the real-time approach
perfectly agree

For holographic theories, there is an extermination
procedure justified by extermination the geodesics with real
and imaginary values

Pseudo Entropy in field theories dual to dS spacetime
followed by a “double Wick rotation” is the same as TEE in
field theories dual to AdS
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Holographic TEE: Geodesics in Global AdSs

» Geodesic length between (poo, %,d)g) and (peo, —%, ®0)

D = cosh™ (cosh2 Poo COs T — sinh? ,000)

) sin? %
~ i + log 5 ,

€

(~: leading order in cut-off € = e7P=)
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Holographic TEE: Geodesics in Global AdSs

» Geodesic length between (poo, %,d)g) and (peo, —%, ®0)

D = cosh™ (cosh2 Poo COs T — sinh? ,000)

) sin? %
~ i + log 5 ,

€

(~: leading order in cut-off € = e7P=)

» Timelike part comes from the homology condition

2sin Lo
(T)_ C 2 Cc .
Sy —glog(—e )+6m

same as CFT result with R =27
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Numerical Results (Imaginary Part): Finite Size
R=100 , =1, m=10"

o 6=1
w 6=10
- * 6=20
[ A 6=30
2, v 6=40
E o 65=50
I
6

0 20 40 60 80 100
To
R=100, e=1, m=10"

Re [S(To)]

To
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