## Timelike Entanglement Entropy

Ali Mollabashi



#### Based on: Phys.Rev.Lett. 130 (2023) 3, 031601, [2210.09457] JHEP 05 (2023) 052, [2302.11695]

#### Collaborators: Kazuki Doi, Jonathan Harper, Tadashi Takayanagi, Yusuke Taki

IPM, IRCHEP (1402)

Ali Mollabashi

Timelike EE

## Warm up: why TEE, ...

• Timelike entanglement "entropy" is a new *complex-valued* measure of information

# Warm up: why TEE, ...

- Timelike entanglement "entropy" is a new *complex-valued* measure of information
- An early motivation: Concerns from dS/CFT; Is it possible to understand about the entanglement structure of theories dual to dS geometries via weak rotation of well-known results in AdS?

# Warm up: why TEE, ...

- Timelike entanglement "entropy" is a new *complex-valued* measure of information
- An early motivation: Concerns from dS/CFT; Is it possible to understand about the entanglement structure of theories dual to dS geometries via weak rotation of well-known results in AdS?
- The content of this talk:
  - ▶ A reminder: Definition of pseudo entanglement
  - Definition of timelike entanglement in QFT
  - ▶ TEE is an example of pseudo entanglement
  - ▶ Holographic prescription to calculate TEE (v.1)
  - A comment about: TEE in AdS  $\Leftrightarrow$  EE in dS/CFT

• Entanglement entropy is defined for a single state  $|\psi\rangle$ 

- Entanglement entropy is defined for a single state  $|\psi\rangle$
- Pseudo Entropy is defined for two states  $|\psi\rangle_1$  and  $|\psi\rangle_2$

$$\rho = \frac{|\psi\rangle \langle \psi|}{\langle \psi|\psi\rangle} \longrightarrow \tau^{\psi_1|\psi_2} = \frac{|\psi_1\rangle \langle \psi_2|}{\langle \psi_2|\psi_1\rangle}$$

- Entanglement entropy is defined for a single state  $|\psi\rangle$
- Pseudo Entropy is defined for two states  $|\psi\rangle_1$  and  $|\psi\rangle_2$

$$\rho = \frac{|\psi\rangle \langle \psi|}{\langle \psi|\psi\rangle} \longrightarrow \tau^{\psi_1|\psi_2} = \frac{|\psi_1\rangle \langle \psi_2|}{\langle \psi_2|\psi_1\rangle}$$

Pseudo entropy [Nakata-Takayanagi-Taki-Tamaoka-Wei '20]:

$$S(\tau_A) = -\operatorname{Tr}_A \left[ \tau_A \log \tau_A \right] \quad , \quad \tau_A = \operatorname{Tr}_B \left[ \tau_{AB}^{\psi_1 | \psi_2} \right]$$

- Entanglement entropy is defined for a single state  $|\psi\rangle$
- Pseudo Entropy is defined for two states  $|\psi\rangle_1$  and  $|\psi\rangle_2$

$$\rho = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle} \longrightarrow \tau^{\psi_1|\psi_2} = \frac{|\psi_1\rangle\langle\psi_2|}{\langle\psi_2|\psi_1\rangle}$$

Pseudo entropy [Nakata-Takayanagi-Taki-Tamaoka-Wei '20]:

$$S(\tau_A) = -\operatorname{Tr}_A \left[ \tau_A \log \tau_A \right] , \quad \tau_A = \operatorname{Tr}_B \left[ \tau_{AB}^{\psi_1 | \psi_2} \right]$$

•  $\tau_{AB}^{\psi_1|\psi_2}$  naturally arises after post-selection measurements

- Entanglement entropy is defined for a single state  $|\psi\rangle$
- Pseudo Entropy is defined for two states  $|\psi\rangle_1$  and  $|\psi\rangle_2$

$$\rho = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle} \longrightarrow \tau^{\psi_1|\psi_2} = \frac{|\psi_1\rangle\langle\psi_2|}{\langle\psi_2|\psi_1\rangle}$$

Pseudo entropy [Nakata-Takayanagi-Taki-Tamaoka-Wei '20]:

$$S(\tau_A) = -\operatorname{Tr}_A \left[ \tau_A \log \tau_A \right] , \quad \tau_A = \operatorname{Tr}_B \left[ \tau_{AB}^{\psi_1 | \psi_2} \right]$$

- $\tau_{AB}^{\psi_1|\psi_2}$  naturally arises after post-selection measurements
- ▶ Weak value [Aharonov-Albert-Vaidman '88]

$$\frac{\langle \psi_1 | O_A | \psi_2 \rangle}{\langle \psi_1 | \psi_2 \rangle} = \operatorname{Tr} \left[ O_A \tau_A^{2|1} \right]$$

Ali Mollabashi

- Entanglement entropy is defined for a single state  $|\psi\rangle$
- Pseudo Entropy is defined for two states  $|\psi\rangle_1$  and  $|\psi\rangle_2$

$$\rho = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle} \longrightarrow \tau^{\psi_1|\psi_2} = \frac{|\psi_1\rangle\langle\psi_2|}{\langle\psi_2|\psi_1\rangle}$$

Pseudo entropy [Nakata-Takayanagi-Taki-Tamaoka-Wei '20]:

$$S(\tau_A) = -\operatorname{Tr}_A \left[ \tau_A \log \tau_A \right] , \quad \tau_A = \operatorname{Tr}_B \left[ \tau_{AB}^{\psi_1 | \psi_2} \right]$$

- $\tau_{AB}^{\psi_1|\psi_2}$  naturally arises after post-selection measurements
- ▶ Weak value [Aharonov-Albert-Vaidman '88]

$$\frac{\langle \psi_1 | O_A | \psi_2 \rangle}{\langle \psi_1 | \psi_2 \rangle} = \operatorname{Tr} \left[ O_A \tau_A^{2|1} \right]$$

Start with  $|\psi_1\rangle$ , perform a measurement  $O_A$ , discard all outcomes except those which the final state is  $|\psi_2\rangle$ 

Ali Mollabashi

Timelike EE







[Nakata-Takayanagi-Taki-Tamaoka-Wei '20]

• It is much easier to work with  $\rho^n$  rather than  $\log \rho$ 

- It is much easier to work with  $\rho^n$  rather than  $\log \rho$
- ▶ Replica method [Callan-Wilczek '94]

$$S_A^{(n)} = \frac{1}{1-n} \log \operatorname{Tr} [\rho_A^n] \quad , \quad \lim_{n \to 1} S_A^{(n)} = S_A$$

- It is much easier to work with  $\rho^n$  rather than  $\log \rho$
- ▶ Replica method [Callan-Wilczek '94]

$$S_A^{(n)} = \frac{1}{1-n} \log \operatorname{Tr} [\rho_A^n] \quad , \quad \lim_{n \to 1} S_A^{(n)} = S_A$$

▶ In Euclidean formalism we have to calculate

$$\operatorname{Tr}\left[\rho_{A}^{n}\right] \propto \int_{\mathcal{R}_{n}} \mathcal{D}\phi \, e^{-S_{E}\left[\phi\right]} = \mathcal{Z}_{n}$$

- It is much easier to work with  $\rho^n$  rather than  $\log \rho$
- Replica method [Callan-Wilczek '94]

$$S_A^{(n)} = \frac{1}{1-n} \log \operatorname{Tr} [\rho_A^n] \quad , \quad \lim_{n \to 1} S_A^{(n)} = S_A$$

▶ In Euclidean formalism we have to calculate

$$\operatorname{Tr}\left[\rho_{A}^{n}\right] \propto \int_{\mathcal{R}_{n}} \mathcal{D}\phi \, e^{-S_{E}\left[\phi\right]} = \mathcal{Z}_{n}$$

▶ The key point [Calabrese-Cardy '04]

$$\mathbb{C}$$
 in presence of  $\mathcal{O}_{(n)} \Leftrightarrow \mathcal{R}_n$ 

- It is much easier to work with  $\rho^n$  rather than  $\log \rho$
- Replica method [Callan-Wilczek '94]

$$S_A^{(n)} = \frac{1}{1-n} \log \operatorname{Tr} [\rho_A^n] \quad , \quad \lim_{n \to 1} S_A^{(n)} = S_A$$

▶ In Euclidean formalism we have to calculate

$$\operatorname{Tr}\left[\rho_{A}^{n}\right] \propto \int_{\mathcal{R}_{n}} \mathcal{D}\phi \, e^{-S_{E}\left[\phi\right]} = \mathcal{Z}_{n}$$

▶ The key point [Calabrese-Cardy '04]

$$\mathbb{C}$$
 in presence of  $\mathcal{O}_{(n)} \Leftrightarrow \mathcal{R}_n$ 

• For A: a single interval

$$\mathcal{Z}_n \propto \langle \sigma_n \bar{\sigma}_n \rangle_{\mathbb{C}} \quad , \quad \Delta_n = \frac{c}{12} \left( n - \frac{1}{n} \right)$$

- It is much easier to work with  $\rho^n$  rather than  $\log \rho$
- ▶ Replica method [Callan-Wilczek '94]

$$S_A^{(n)} = \frac{1}{1-n} \log \operatorname{Tr} [\rho_A^n] \quad , \quad \lim_{n \to 1} S_A^{(n)} = S_A$$

▶ In Euclidean formalism we have to calculate

$$\operatorname{Tr}\left[\rho_{A}^{n}\right] \propto \int_{\mathcal{R}_{n}} \mathcal{D}\phi \, e^{-S_{E}\left[\phi\right]} = \mathcal{Z}_{n}$$

▶ The key point [Calabrese-Cardy '04]

$$\mathbb{C}$$
 in presence of  $\mathcal{O}_{(n)} \Leftrightarrow \mathcal{R}_n$ 

• For A: a single interval

$$\mathcal{Z}_n \propto \langle \sigma_n \bar{\sigma}_n \rangle_{\mathbb{C}}$$
,  $\Delta_n = \frac{c}{12} \left( n - \frac{1}{n} \right)$   
This leads to

$$\operatorname{Tr}\left[\rho_{A}^{n}\right] = \frac{\mathcal{Z}_{n}}{\mathcal{Z}_{1}^{n}} \propto \left(\frac{L_{A}}{\epsilon}\right)^{-\overline{6}\left(n-\frac{1}{n}\right)}$$

Ali Mollabashi

Timelike EE

• Reminder: For spacelike regions

$$S_A^{(n)} = \frac{1}{1-n} \log \langle \sigma_n(P) \bar{\sigma}_n(Q) \rangle$$
$$= \frac{1}{1-n} \log \left[ \left( \frac{\epsilon}{\sqrt{(x_P - x_Q)^2 - (t_P - t_Q)^2}} \right)^{2\Delta_n} \right]$$

• Reminder: For spacelike regions

$$S_A^{(n)} = \frac{1}{1-n} \log \langle \sigma_n(P) \bar{\sigma}_n(Q) \rangle$$
$$= \frac{1}{1-n} \log \left[ \left( \frac{\epsilon}{\sqrt{(x_P - x_Q)^2 - (t_P - t_Q)^2}} \right)^{2\Delta_n} \right]$$

▶ EE is given by

$$S_A = S_A^{(1)} = \frac{c}{3} \log \left[ \frac{\sqrt{(\Delta x)^2 - (\Delta t)^2}}{\epsilon} \right]$$

• Reminder: For spacelike regions

$$S_A^{(n)} = \frac{1}{1-n} \log \langle \sigma_n(P) \bar{\sigma}_n(Q) \rangle$$
$$= \frac{1}{1-n} \log \left[ \left( \frac{\epsilon}{\sqrt{(x_P - x_Q)^2 - (t_P - t_Q)^2}} \right)^{2\Delta_n} \right]$$

▶ EE is given by

$$S_A = S_A^{(1)} = \frac{c}{3} \log \left[ \frac{\sqrt{(\Delta x)^2 - (\Delta t)^2}}{\epsilon} \right]$$

• Continue to  $(\Delta x)^2 - (\Delta t)^2 < 0$ , for pure timelike region  $T_0$ 

$$S_A^{(\mathrm{T})} = \frac{c}{3}\log\frac{T_0}{\epsilon} + \frac{c\pi}{6}i$$

Ali Mollabashi

Timelike EE

• Finite Size: CFT on a circle (R), For a pure timelike region  $T_0$ 

$$S_A^{(\mathrm{T})} = \frac{c}{3} \log \left[ \frac{R}{\pi \epsilon} \sin \frac{\pi T_0}{R} \right] + \frac{i \pi c}{6}$$

• Finite Size: CFT on a circle (R), For a pure timelike region  $T_0$ 

$$S_A^{(\mathrm{T})} = \frac{c}{3} \log \left[ \frac{R}{\pi \epsilon} \sin \frac{\pi T_0}{R} \right] + \frac{i\pi c}{6}$$

• Finite Temperature: CFT at temperature  $(1/\beta)$ , For a pure timelike region  $T_0$ 

$$S_A^{(\mathrm{T})} = \frac{c}{3} \log \left[\frac{\beta}{\pi\epsilon} \sinh \frac{\pi T_0}{\beta}\right] + \frac{i\pi c}{6}$$

• Consider a free scalar theory with  $x \sim x + R$ 

▶ Consider a free scalar theory with  $x \sim x + R$ 

$$S = \frac{1}{2} \int dt dx \left[ (\partial_t \phi)^2 - (\partial_x \phi)^2 - m^2 \phi^2 \right]$$

the partition function is given by  $Z_{\phi} = \int D\phi \, e^{iS}$ 

▶ Consider a free scalar theory with  $x \sim x + R$ 

$$S = \frac{1}{2} \int dt dx \left[ (\partial_t \phi)^2 - (\partial_x \phi)^2 - m^2 \phi^2 \right]$$

the partition function is given by  $Z_{\phi}$  =  $\int D\phi \, e^{iS}$ 

▶ Consider t: spatial direction, T = -ix: real-time



▶ The "Hamiltonian" reads

$$H = \frac{-i}{2} \int dt \left[ \pi^2 + (\partial_t \phi)^2 - m^2 \phi^2 \right]$$

where  $\pi = -\partial_x \phi$  is the canonical momentum such that

$$[\phi(t),\pi(t')] = i\delta(t-t')$$

▶ The "Hamiltonian" reads

$$H = \frac{-i}{2} \int dt \left[ \pi^2 + (\partial_t \phi)^2 - m^2 \phi^2 \right]$$

where  $\pi = -\partial_x \phi$  is the canonical momentum such that

$$[\phi(t),\pi(t')] = i\delta(t-t')$$

• In this formulation  $(\tilde{H} = iH)$ 

$$Z_{\phi} = \mathrm{Tr}\left[e^{-RH}\right]$$

▶ The "Hamiltonian" reads

$$H = \frac{-i}{2} \int dt \left[ \pi^2 + (\partial_t \phi)^2 - m^2 \phi^2 \right]$$

where  $\pi = -\partial_x \phi$  is the canonical momentum such that

$$[\phi(t),\pi(t')] = i\delta(t-t')$$

▶ In this formulation  $(\tilde{H} = iH)$ 

$$Z_{\phi} = \operatorname{Tr}\left[e^{-RH}\right] = \operatorname{Tr}\left[e^{iR\tilde{H}}\right]$$

▶ The "Hamiltonian" reads

$$H = \frac{-i}{2} \int dt \left[ \pi^2 + (\partial_t \phi)^2 - m^2 \phi^2 \right]$$

where  $\pi = -\partial_x \phi$  is the canonical momentum such that

$$[\phi(t),\pi(t')] = i\delta(t-t')$$

• In this formulation  $(\tilde{H} = iH)$ 

$$Z_{\phi} = \operatorname{Tr}\left[e^{-RH}\right] = \operatorname{Tr}\left[e^{iR\tilde{H}}\right]$$

▶ Prescription: With  $\beta_S \rightarrow -iR$  and  $m \rightarrow -im$ , we can find TEE from EE

Ali Mollabashi

Timelike EE

▶ Finite temperature EE to finite size TEE

$$S_A = \frac{c}{3} \log \left[ \frac{\beta_S}{\pi \tilde{\epsilon}} \sinh \frac{\pi X_0}{\beta_S} \right] \xrightarrow[\tilde{\epsilon} \to -i\epsilon]{\tilde{\epsilon} \to -i\epsilon} S_A^{(T)} = \frac{c}{3} \log \left[ \frac{R}{\pi \epsilon} \sin \frac{\pi T_0}{R} \right] + \frac{i\pi c}{6}$$

▶ Finite temperature EE to finite size TEE

$$S_A = \frac{c}{3} \log \left[ \frac{\beta_S}{\pi \tilde{\epsilon}} \sinh \frac{\pi X_0}{\beta_S} \right] \xrightarrow[\tilde{\epsilon} \to -i\epsilon]{\tilde{\epsilon} \to -i\epsilon} S_A^{(T)} = \frac{c}{3} \log \left[ \frac{R}{\pi \epsilon} \sin \frac{\pi T_0}{R} \right] + \frac{i\pi c}{6}$$

▶ Take  $t \sim t - i\beta$  and  $R \rightarrow \infty$  to define finite temperature TEE
### Timelike EE in QFT II: Wick Rotation of Coordinates

▶ Finite temperature EE to finite size TEE

$$S_A = \frac{c}{3} \log \left[ \frac{\beta_S}{\pi \tilde{\epsilon}} \sinh \frac{\pi X_0}{\beta_S} \right] \xrightarrow[\tilde{\epsilon} \to -i\epsilon]{\tilde{\epsilon} \to -i\epsilon} S_A^{(T)} = \frac{c}{3} \log \left[ \frac{R}{\pi \epsilon} \sin \frac{\pi T_0}{R} \right] + \frac{i\pi c}{6}$$

- ▶ Take  $t \sim t i\beta$  and  $R \rightarrow \infty$  to define finite temperature TEE
- ▶ Finite size EE to finite temperature TEE

$$S_A = \frac{c}{3} \log \left[ \frac{R_S}{\pi \tilde{\epsilon}} \sin \left( \frac{\pi X_0}{R_S} \right) \right] \xrightarrow[\tilde{\epsilon} \to -i\epsilon]{\tilde{\epsilon} \to -i\epsilon} S_A^{(\mathrm{T})} = \frac{c}{3} \log \left[ \frac{R}{\pi \epsilon} \sinh \frac{\pi T_0}{R} \right] + \frac{i\pi c}{6}$$

## TEE as Pseudo Entanglement Entropy

▶ The reduced density matrix corresponding to TEE was NOT hermitian (remember  $H = i\tilde{H}$ )

## TEE as Pseudo Entanglement Entropy

- ▶ The reduced density matrix corresponding to TEE was NOT hermitian (remember  $H = i\tilde{H}$ )
- ▶ More explicitly consider the following purification

$$|\Psi\rangle = \frac{1}{\sqrt{Z(\delta)}} \sum_{n} e^{+i(R+i\delta)E_n/2} |n\rangle_1 |n\rangle_2$$

$$|\Psi^*\rangle = \frac{1}{\sqrt{Z(\delta)}} \sum_{n} e^{-i(R-i\delta)E_n/2} |n\rangle_1 |n\rangle_2$$

## TEE as Pseudo Entanglement Entropy

- ▶ The reduced density matrix corresponding to TEE was NOT hermitian (remember  $H = i\tilde{H}$ )
- More explicitly consider the following purification

$$|\Psi\rangle = \frac{1}{\sqrt{Z(\delta)}} \sum_{n} e^{+i(R+i\delta)E_n/2} |n\rangle_1 |n\rangle_2$$

$$|\Psi^*\rangle = \frac{1}{\sqrt{Z(\delta)}} \sum_{n} e^{-i(R-i\delta)E_n/2} |n\rangle_1 |n\rangle_2$$

Tracing over one copy

$$\operatorname{Tr}_2|\Psi\rangle\langle\Psi^*| = e^{i(R+i\delta)\tilde{H}}$$

TEE is naturally expressed in terms of  $\mathbf{pseudo}\ \mathbf{entropy}$ 

Ali Mollabashi

• Spectrum of  $\tau_A \longrightarrow \text{TEE}$ 

- Spectrum of  $\tau_A \longrightarrow \text{TEE}$
- How to read the spectrum of  $\tau_A$ ?

$$\langle \mathcal{O}_A \rangle = \operatorname{Tr}_A \left[ \tau_A \mathcal{O}_A \right]$$

- Spectrum of  $\tau_A \longrightarrow \text{TEE}$
- How to read the spectrum of  $\tau_A$ ?

$$\langle \mathcal{O}_A \rangle = \operatorname{Tr}_A \left[ \tau_A \mathcal{O}_A \right]$$

▶ In free theories Wick's theorem  $\longrightarrow$  A unique way to real the spectrum of  $\tau_A$ 

- Spectrum of  $\tau_A \longrightarrow \text{TEE}$
- How to read the spectrum of  $\tau_A$ ?

$$\langle \mathcal{O}_A \rangle = \operatorname{Tr}_A \left[ \tau_A \mathcal{O}_A \right]$$

- ▶ In free theories Wick's theorem  $\longrightarrow$  A unique way to real the spectrum of  $\tau_A$
- ▶ All we need are the two-point functions

- Spectrum of  $\tau_A \longrightarrow \text{TEE}$
- How to read the spectrum of  $\tau_A$ ?

$$\langle \mathcal{O}_A \rangle = \operatorname{Tr}_A \left[ \tau_A \mathcal{O}_A \right]$$

- ▶ In free theories Wick's theorem  $\longrightarrow$  A unique way to real the spectrum of  $\tau_A$
- ▶ All we need are the two-point functions
- ▶ Similar to the standard formulation of KG theory

$$H = -i \int d^{d-1}k_y \, dk \, \Omega_{\mathbf{k}} \, a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$$

• In 2*d* case  $(\Omega_k = \sqrt{k^2 - m^2})$  the structure of  $\operatorname{Tr}_A[\tau_A \mathcal{O}_A]$ 

$$\sum_{n} e^{iR\Omega_k n} f(n)$$

Ali Mollabashi

- Spectrum of  $\tau_A \longrightarrow \text{TEE}$
- How to read the spectrum of  $\tau_A$ ?

$$\langle \mathcal{O}_A \rangle = \operatorname{Tr}_A \left[ \tau_A \mathcal{O}_A \right]$$

- ▶ In free theories Wick's theorem  $\longrightarrow$  A unique way to real the spectrum of  $\tau_A$
- ▶ All we need are the two-point functions
- ▶ Similar to the standard formulation of KG theory

$$H = -i \int d^{d-1}k_y \, dk \, \Omega_{\mathbf{k}} \, a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$$

• In 2*d* case  $(\Omega_k = \sqrt{k^2 - m^2})$  the structure of  $\operatorname{Tr}_A[\tau_A \mathcal{O}_A]$ 

$$\sum_{n} e^{iR\Omega_k n} f(n) \longrightarrow \sum_{n} e^{i(R+i\delta)\Omega_k n} f(n)$$

Ali Mollabashi

- Spectrum of  $\tau_A \longrightarrow \text{TEE}$
- How to read the spectrum of  $\tau_A$ ?

$$\langle \mathcal{O}_A \rangle = \operatorname{Tr}_A \left[ \tau_A \mathcal{O}_A \right]$$

- $\blacktriangleright$  In free theories Wick's theorem  $\longrightarrow$  A unique way to real the spectrum of  $\tau_A$
- ▶ All we need are the two-point functions
- ▶ Similar to the standard formulation of KG theory

$$H = -i \int d^{d-1}k_y \, dk \, \Omega_{\mathbf{k}} \, a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$$

• In 2*d* case  $(\Omega_k = \sqrt{k^2 - m^2})$  the structure of  $\operatorname{Tr}_A[\tau_A \mathcal{O}_A]$ 

$$\sum_{n} e^{iR\Omega_k n} f(n) \longrightarrow \sum_{n} e^{i(R+i\delta)\Omega_k n} f(n) = \sum_{n} e^{-(R+i\delta)\Omega_{ik} n} f(n)$$

Ali Mollabashi

• The relevant correlation functions (similarly for  $\Pi_{tt'}$ )

$$\Phi_{tt'} \equiv \operatorname{Tr}\left[e^{i(R+i\delta)\tilde{H}}\phi(t)\phi(t')\right] = \int \frac{dk}{2\pi} \frac{i}{2\Omega_{ik}} \operatorname{coth}\left(\frac{(R+i\delta)\Omega_{ik}}{2}\right) e^{ik(t-t')}$$

• The relevant correlation functions (similarly for  $\Pi_{tt'}$ )

$$\Phi_{tt'} \equiv \operatorname{Tr}\left[e^{i(R+i\delta)\tilde{H}}\phi(t)\phi(t')\right] = \int \frac{dk}{2\pi} \frac{i}{2\Omega_{ik}} \operatorname{coth}\left(\frac{(R+i\delta)\Omega_{ik}}{2}\right) e^{ik(t-t')}$$



• The relevant correlation functions (similarly for  $\Pi_{tt'}$ )

$$\Phi_{tt'} \equiv \operatorname{Tr}\left[e^{i(R+i\delta)\tilde{H}}\phi(t)\phi(t')\right] = \int \frac{dk}{2\pi} \frac{i}{2\Omega_{ik}} \operatorname{coth}\left(\frac{(R+i\delta)\Omega_{ik}}{2}\right) e^{ik(t-t')}$$



Strong numerical evidence for the imaginary part

• The relevant correlation functions (similarly for  $\Pi_{tt'}$ )

$$\Phi_{tt'} \equiv \operatorname{Tr}\left[e^{i(R+i\delta)\tilde{H}}\phi(t)\phi(t')\right] = \int \frac{dk}{2\pi} \frac{i}{2\Omega_{ik}} \operatorname{coth}\left(\frac{(R+i\delta)\Omega_{ik}}{2}\right) e^{ik(t-t')}$$



- ▶ Strong numerical evidence for the imaginary part
- ▶ Numerical results also agree in the finite temperature case

Holographic Timelike EE in Pure  $AdS_3$ 

▶ Poincare AdS<sub>3</sub>

$$ds^2 = \frac{dz^2 - dt^2 + dx^2}{z^2},$$

with continuation  $X_0 \rightarrow iT_0$ 

$$t = \sqrt{z^2 + (T_0/2)^2}$$

Holographic Timelike EE in Pure  $AdS_3$ 

▶ Poincare AdS<sub>3</sub>

$$ds^2 = \frac{dz^2 - dt^2 + dx^2}{z^2},$$

with continuation  $X_0 \rightarrow iT_0$ 

$$t = \sqrt{z^2 + (T_0/2)^2}$$



Holographic Timelike EE in Pure  $AdS_3$ 

▶ Poincare AdS<sub>3</sub>

$$ds^2 = \frac{dz^2 - dt^2 + dx^2}{z^2},$$

with continuation  $X_0 \rightarrow iT_0$ 

$$t = \sqrt{z^2 + (T_0/2)^2}$$



Timelike part comes from the homology condition

$$S_A^{(\mathrm{T})} = \frac{c}{3} \log\left(\frac{T_0}{\epsilon}\right) + \frac{c}{6}\pi i$$

Ali Mollabashi

• Can a union of timelike and spacelike geodesics result from an extremizing prescription?

- Can a union of timelike and spacelike geodesics result from an extremizing prescription?
- $AdS_2$  slicing of  $AdS_3$  shows an affirmative answer

$$ds^{2} = d\eta^{2} + \cosh^{2}\eta \left(-\cosh^{2}rdt^{2} + dr^{2}\right)$$

- Can a union of timelike and spacelike geodesics result from an extremizing prescription?
- $\blacktriangleright$  AdS<sub>2</sub> slicing of AdS<sub>3</sub> shows an affirmative answer

$$ds^{2} = d\eta^{2} + \cosh^{2}\eta \left(-\cosh^{2}rdt^{2} + dr^{2}\right)$$

we analytically continue  $\eta < 0$  by  $\eta = i \tilde{\eta}$ 

$$ds^{2} = -d\tilde{\eta}^{2} + \cos^{2}\tilde{\eta}\left(-\cosh^{2}rdt^{2} + dr^{2}\right), \quad \left(0 < \tilde{\eta} < \pi/2\right)$$

- Can a union of timelike and spacelike geodesics result from an extremizing prescription?
- $AdS_2$  slicing of  $AdS_3$  shows an affirmative answer

$$ds^{2} = d\eta^{2} + \cosh^{2}\eta \left(-\cosh^{2}rdt^{2} + dr^{2}\right)$$

we analytically continue  $\eta < 0$  by  $\eta = i \tilde{\eta}$ 

$$ds^2 = -d\tilde{\eta}^2 + \cos^2\tilde{\eta} \left( -\cosh^2 r dt^2 + dr^2 \right), \quad \left( 0 < \tilde{\eta} < \pi/2 \right)$$



$$ds^2 = -(d\tilde{\eta}^2 + \cos^2\tilde{\eta}dt^2), \quad (0 < \tilde{\eta} < \pi/2)$$

• Due to symmetry  $\Gamma_A$  is expected to be on

$$ds^2 = -(d\tilde{\eta}^2 + \cos^2\tilde{\eta}dt^2), \quad (0 < \tilde{\eta} < \pi/2)$$

▶ For compactified t this is a  $-ds_{S^2}^2$  with imaginary length

$$ds^2 = -(d\tilde{\eta}^2 + \cos^2\tilde{\eta}dt^2), \quad (0 < \tilde{\eta} < \pi/2)$$

- ▶ For compactified t this is a  $-ds_{S^2}^2$  with imaginary length
- Extremizing w.r.t the points on  $\eta = 0$  leads to the geodesic along the boundary of  $S^2$  (with length  $i\pi$ )

$$ds^{2} = -(d\tilde{\eta}^{2} + \cos^{2}\tilde{\eta}dt^{2}), \quad (0 < \tilde{\eta} < \pi/2)$$

- ▶ For compactified t this is a  $-ds_{S^2}^2$  with imaginary length
- Extremizing w.r.t the points on  $\eta = 0$  leads to the geodesic along the boundary of  $S^2$  (with length  $i\pi$ )
- $\Rightarrow$  the real part is the sum of geodesics with fixed endpoints

$$ds^2 = -(d\tilde{\eta}^2 + \cos^2\tilde{\eta}dt^2), \quad (0 < \tilde{\eta} < \pi/2)$$

- ▶ For compactified t this is a  $-ds_{S^2}^2$  with imaginary length
- Extremizing w.r.t the points on  $\eta = 0$  leads to the geodesic along the boundary of  $S^2$  (with length  $i\pi$ )
- $\blacktriangleright \Rightarrow$  the real part is the sum of geodesics with fixed endpoints
- Prescription summary:
  - 1. Construct candidates of  $\Gamma_A$  from a union of spacelike and timelike geodesics such that  $\partial \Gamma_A = \partial A$
  - 2. (Considering Wick rotated geometry for the timelike geodesics), require all variations of the joining points to be stationary

$$ds^{2} = -4\frac{dudv}{(1+uv)^{2}} + \frac{(1-uv)^{2}}{(1+uv)^{2}}r_{+}^{2}d\phi^{2}$$

$$ds^{2} = -4\frac{dudv}{(1+uv)^{2}} + \frac{(1-uv)^{2}}{(1+uv)^{2}}r_{+}^{2}d\phi^{2}$$

Solving the geodesic equation u''(1+uv) + 2u'(u-u'v) = 0• How extremization works?

$$\begin{cases} (a_1, -\frac{1}{a_1}) & \text{subregion bdy} \\ (a_2, -\frac{1}{a_2}) & \text{subregion bdy} \\ (s, \frac{1}{s}) & \text{future singularity} \\ (-q, -\frac{1}{q}) & \text{past singularity} \end{cases}$$

$$ds^{2} = -4\frac{dudv}{(1+uv)^{2}} + \frac{(1-uv)^{2}}{(1+uv)^{2}}r_{+}^{2}d\phi^{2}$$

Solving the geodesic equation u''(1+uv) + 2u'(u-u'v) = 0• How extremization works?

$$\begin{cases} (a_1, -\frac{1}{a_1}) & \text{subregion bdy} \\ (a_2, -\frac{1}{a_2}) & \text{subregion bdy} \\ (s, \frac{1}{s}) & \text{future singularity} \\ (-q, -\frac{1}{q}) & \text{past singularity} \end{cases}$$

• Existence of timelike geodesic  $\Rightarrow$  s = q

Ali Mollabashi

$$ds^{2} = -4\frac{dudv}{(1+uv)^{2}} + \frac{(1-uv)^{2}}{(1+uv)^{2}}r_{+}^{2}d\phi^{2}$$

Solving the geodesic equation u''(1+uv) + 2u'(u-u'v) = 0• How extremization works?

$$\begin{cases} (a_1, -\frac{1}{a_1}) & \text{subregion bdy} \\ (a_2, -\frac{1}{a_2}) & \text{subregion bdy} \\ (s, \frac{1}{s}) & \text{future singularity} \\ (-q, -\frac{1}{q}) & \text{past singularity} \end{cases}$$

- Existence of timelike geodesic  $\Rightarrow$  s = q
- Extremizing w.r.t.  $s \Rightarrow s^2 = a_1 a_2$

Ali Mollabashi

Putting three pieces together

$$S_A^{(\mathrm{T})} = \frac{c}{3} \log \left( \frac{\beta}{\pi \delta} \sinh \left( \frac{\pi}{\beta} (T_2 - T_1) \right) \right) + \frac{c}{6} i \pi$$



• Can we fully understand the entanglement structure of TFD states without TEE?

- Can we fully understand the entanglement structure of TFD states without TEE?
- How to interpret:  $\sigma_n$  in  $\operatorname{CFT}_R$  and  $\overline{\sigma}_n$  in  $\operatorname{CFT}_L$ ?

- Can we fully understand the entanglement structure of TFD states without TEE?
- How to interpret:  $\sigma_n$  in  $CFT_R$  and  $\bar{\sigma}_n$  in  $CFT_L$ ?



- Can we fully understand the entanglement structure of TFD states without TEE?
- How to interpret:  $\sigma_n$  in  $\operatorname{CFT}_R$  and  $\overline{\sigma}_n$  in  $\operatorname{CFT}_L$ ?



• There is no spacelike A that  $\sigma_n$  and  $\bar{\sigma}_n$  are at  $\partial A$  The Hilbert space is constructed from fields on disconnected circles **cannot** be interpreted as EE!
#### Necessity of TEE in TFD States

- Can we fully understand the entanglement structure of TFD states without TEE?
- How to interpret:  $\sigma_n$  in  $\operatorname{CFT}_R$  and  $\overline{\sigma}_n$  in  $\operatorname{CFT}_L$ ?



- There is no spacelike A that  $\sigma_n$  and  $\bar{\sigma}_n$  are at  $\partial A$  The Hilbert space is constructed from fields on disconnected circles **cannot** be interpreted as EE!
- ▶ This configuration should be interpreted as TEE!

• Is timelike EE related to entropy in field theories dual to de Sitter spacetime?

- Is timelike EE related to entropy in field theories dual to de Sitter spacetime?
- ► dS / CFT is conjectured for the theory leaving on S<sup>d</sup> part of dS space  $ds^2 = R_{\rm dS}^2 (-d\tau^2 + \cosh^2 \tau \, d\Omega_d^2)$

and a Euclidean  $\mathrm{CFT}_d$ 

 The dictionary analogous to the GKPW [Gubser-Klebanov-Polyakov, Witten '98]

$$Z_{\rm CFT}[\phi_0] = \Psi_{\rm dS}[\phi_0] = \int_{\phi|_{\tau=\tau_{\infty}}=\phi_0} \mathcal{D}\phi \, e^{iI_{\rm dS}[\phi]} \Psi_{\rm in}$$

- Is timelike EE related to entropy in field theories dual to de Sitter spacetime?
- ► dS / CFT is conjectured for the theory leaving on S<sup>d</sup> part of dS space  $ds^2 = R_{\rm dS}^2 (-d\tau^2 + \cosh^2 \tau \, d\Omega_d^2)$

and a Euclidean  $\mathrm{CFT}_d$ 

 The dictionary analogous to the GKPW [Gubser-Klebanov-Polyakov, Witten '98]

$$Z_{\rm CFT}[\phi_0] = \Psi_{\rm dS}[\phi_0] = \int_{\phi|_{\tau=\tau_\infty}=\phi_0} \mathcal{D}\phi \, e^{iI_{\rm dS}[\phi]} \Psi_{\rm in}$$

 Conjecture: CFT is non-unitary with c<sub>dS</sub> = ic<sub>AdS</sub> (2d) [Maldacena '02]

- Is timelike EE related to entropy in field theories dual to de Sitter spacetime?
- ► dS / CFT is conjectured for the theory leaving on S<sup>d</sup> part of dS space  $ds^2 = R_{\rm dS}^2 (-d\tau^2 + \cosh^2 \tau \, d\Omega_d^2)$

and a Euclidean  $\mathrm{CFT}_d$ 

 The dictionary analogous to the GKPW [Gubser-Klebanov-Polyakov, Witten '98]

$$Z_{\rm CFT}[\phi_0] = \Psi_{\rm dS}[\phi_0] = \int_{\phi|_{\tau=\tau_{\infty}}=\phi_0} \mathcal{D}\phi \, e^{iI_{\rm dS}[\phi]} \Psi_{\rm in}$$

- Conjecture: CFT is non-unitary with c<sub>dS</sub> = ic<sub>AdS</sub> (2d) [Maldacena '02]
- non-unitarity  $\longrightarrow \langle \psi | \neq | \psi \rangle^{\dagger}$  $\rho = | \psi \rangle \langle \psi |$  is a transition matrix

Holographic Pseudo Entropy in  $dS_3/CFT_2$ 

• In global  $dS_3$ 

$$ds^{2} = R_{\rm dS}^{2}(-d\tau^{2} + \cosh^{2}\tau(dt_{\rm E}^{2} + \cos^{2}t_{\rm E}d\theta^{2})), \qquad (\tau > 0)$$

with the Euclidean part corresponding to the initial state

$$ds^{2} = R_{\rm dS}^{2} (d\tau_{\rm E}^{2} + \cos^{2} \tau_{\rm E} (dt_{\rm E}^{2} + \cos^{2} t_{\rm E} d\theta^{2})), \quad (0 < \tau_{\rm E} < \pi).$$

we consider A at  $\tau_{\infty}$  on  $t_E = 0$ 

Holographic Pseudo Entropy in  $dS_3/CFT_2$ 

► In global dS<sub>3</sub>

$$ds^{2} = R_{\rm dS}^{2}(-d\tau^{2} + \cosh^{2}\tau(dt_{\rm E}^{2} + \cos^{2}t_{\rm E}d\theta^{2})), \qquad (\tau > 0)$$

with the Euclidean part corresponding to the initial state

$$ds^{2} = R_{\rm dS}^{2} (d\tau_{\rm E}^{2} + \cos^{2} \tau_{\rm E} (dt_{\rm E}^{2} + \cos^{2} t_{\rm E} d\theta^{2})), \quad (0 < \tau_{\rm E} < \pi).$$

we consider A at  $\tau_{\infty}$  on  $t_E = 0$ 



Holographic Pseudo Entropy in  $dS_3/CFT_2$ 

► In global dS<sub>3</sub>

$$ds^{2} = R_{\rm dS}^{2} (-d\tau^{2} + \cosh^{2}\tau (dt_{\rm E}^{2} + \cos^{2}t_{\rm E}d\theta^{2})), \qquad (\tau > 0)$$

with the Euclidean part corresponding to the initial state

$$ds^{2} = R_{\rm dS}^{2} (d\tau_{\rm E}^{2} + \cos^{2}\tau_{\rm E} (dt_{\rm E}^{2} + \cos^{2}t_{\rm E}d\theta^{2})), \quad (0 < \tau_{\rm E} < \pi).$$

we consider A at  $\tau_{\infty}$  on  $t_E = 0$ 



Extrimization of timelike and spacelike parts gives

$$S_A^{(\mathrm{P})} = -i\frac{c_{\mathrm{dS}}}{3}\log\left(\frac{2\sin\frac{\phi_0}{2}}{\epsilon_{\mathrm{dS}}}\right) + \frac{\pi c_{\mathrm{dS}}}{6}, \quad (\epsilon_{\mathrm{dS}} \equiv 2e^{-\tau_{\infty}})$$

Ali Mollabashi

Timelike EE

▶ Starting from Euclidean AdS

$$ds^{2} = R_{\text{AdS}}^{2} \frac{dz^{2} + dt_{\text{E}}^{2} + dx^{2}}{z^{2}} \quad , \quad S_{A} = \frac{c_{\text{AdS}}}{3} \log\left(\frac{T_{0}}{\epsilon_{\text{AdS}}}\right)$$

Starting from Euclidean AdS

$$ds^{2} = R_{AdS}^{2} \frac{dz^{2} + dt_{E}^{2} + dx^{2}}{z^{2}} , \quad S_{A} = \frac{c_{AdS}}{3} \log\left(\frac{T_{0}}{\epsilon_{AdS}}\right)$$

The following "double Wick rotation" gives the same result

Starting from Euclidean AdS

$$ds^2 = R_{\text{AdS}}^2 \frac{dz^2 + dt_{\text{E}}^2 + dx^2}{z^2} \quad , \quad S_A = \frac{c_{\text{AdS}}}{3} \log\left(\frac{T_0}{\epsilon_{\text{AdS}}}\right)$$

The following "double Wick rotation" gives the same result 1.  $z = -i\eta$ ,  $R_{AdS} = -iR_{dS}$  ( $\epsilon_{AdS} = -i\epsilon_{dS}$ ,  $c_{AdS} = -ic_{dS}$ )

Starting from Euclidean AdS

$$ds^{2} = R_{AdS}^{2} \frac{dz^{2} + dt_{E}^{2} + dx^{2}}{z^{2}} , \quad S_{A} = \frac{c_{AdS}}{3} \log\left(\frac{T_{0}}{\epsilon_{AdS}}\right)$$

The following "double Wick rotation" gives the same result

1. 
$$z = -i\eta$$
,  $R_{AdS} = -iR_{dS}$  ( $\epsilon_{AdS} = -i\epsilon_{dS}$ ,  $c_{AdS} = -ic_{dS}$ )  
2.  $t_E = it$  ( $T_0 \rightarrow iT_0$ )

Starting from Euclidean AdS

$$ds^{2} = R_{\text{AdS}}^{2} \frac{dz^{2} + dt_{\text{E}}^{2} + dx^{2}}{z^{2}} \quad , \quad S_{A} = \frac{c_{\text{AdS}}}{3} \log\left(\frac{T_{0}}{\epsilon_{\text{AdS}}}\right)$$

The following "double Wick rotation" gives the same result 1.  $z = -i\eta$ ,  $R_{AdS} = -iR_{dS}$  ( $\epsilon_{AdS} = -i\epsilon_{dS}$ ,  $c_{AdS} = -ic_{dS}$ ) 2.  $t_E = it (T_0 \rightarrow iT_0)$ 





- ▶ TEE defined by the Wick rotation of
  - 1. the replica trick results
  - 2. the coordinates

lead to the same results in  $CFT_2$ 

- ▶ TEE defined by the Wick rotation of
  - 1. the replica trick results
  - 2. the coordinates

lead to the same results in  $CFT_2$ 

 Using def. 2, the analytic continuation and the direct (numerical) calculation using the *real-time* approach perfectly agree

- ▶ TEE defined by the Wick rotation of
  - 1. the replica trick results
  - 2. the coordinates

lead to the same results in  $CFT_2$ 

- Using def. 2, the analytic continuation and the direct (numerical) calculation using the *real-time* approach perfectly agree
- For holographic theories, there is an *extermination* procedure justified by extermination the geodesics with real and imaginary values

- ▶ TEE defined by the Wick rotation of
  - 1. the replica trick results
  - 2. the coordinates

lead to the same results in  $CFT_2$ 

- Using def. 2, the analytic continuation and the direct (numerical) calculation using the *real-time* approach perfectly agree
- For holographic theories, there is an *extermination* procedure justified by extermination the geodesics with real and imaginary values
- Pseudo Entropy in field theories dual to dS spacetime followed by a "*double Wick rotation*" is the same as TEE in field theories dual to AdS

#### Holographic TEE: Geodesics in Global AdS<sub>3</sub>

• Geodesic length between  $(\rho_{\infty}, \frac{T_0}{2}, \phi_0)$  and  $(\rho_{\infty}, -\frac{T_0}{2}, \phi_0)$ 

$$D = \cosh^{-1} \left( \cosh^2 \rho_{\infty} \cos T_0 - \sinh^2 \rho_{\infty} \right)$$
$$\simeq \pi i + \log \left( \frac{\sin^2 \frac{T_0}{2}}{\epsilon^2} \right),$$

(~: leading order in cut-off  $\epsilon = e^{-\rho_{\infty}}$ )

#### Holographic TEE: Geodesics in Global AdS<sub>3</sub>

• Geodesic length between  $(\rho_{\infty}, \frac{T_0}{2}, \phi_0)$  and  $(\rho_{\infty}, -\frac{T_0}{2}, \phi_0)$ 

$$D = \cosh^{-1} \left( \cosh^2 \rho_{\infty} \cos T_0 - \sinh^2 \rho_{\infty} \right)$$
$$\simeq \pi i + \log \left( \frac{\sin^2 \frac{T_0}{2}}{\epsilon^2} \right),$$

(~: leading order in cut-off  $\epsilon = e^{-\rho_\infty})$ 

▶ Timelike part comes from the homology condition

$$S_A^{(\mathrm{T})} = \frac{c}{3} \log \left( \frac{2 \sin \frac{T_0}{2}}{\epsilon} \right) + \frac{c}{6} \pi i$$

same as CFT result with  $R = 2\pi$ 

Ali Mollabashi

# Numerical Results (Imaginary Part): Finite Size R=100, $\epsilon=1$ , $m=10^{-8}$



Ali Mollabashi

Timelike EE