3 Lectures on Black hole physic

- Basics, History
- Black hole solis
- Basic ancepts, Classic theoums.
- General Relativity:

Equivalence Principle

- Weak E.P. $m_{i}=m g$
- Einstein E.P. local non-gravirations (freefall locally) is derailed by framer speak Rel.
- Strong Exp.
- Mathematically: $\left(M, g_{r v}\right)$
- Geometrization
- Diffeomozplism invariance.
- Probes: no back reaction \rightarrow Geodesic

$$
\begin{aligned}
& -\mathrm{Fi}^{2} \text { elds } \rightarrow \text { ficld thowy } \\
& \text { in cuived } \\
& \text { Spuctione } \\
& -G_{\mu \nu}=8 \pi G_{N} T_{\mu \nu}(g ; \phi) \\
& G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu} \\
& I=I_{\text {grav. }}+I_{\text {matt. }} \\
& I_{\text {grav. }}=\frac{1}{\operatorname{Ton} G_{N}} \int d^{4} x \sqrt{-g}(R-2 \Lambda) \\
& I_{\text {matt }}=\int d^{4} x \sqrt{-g} \mathcal{L}_{\text {matt }} \\
& \frac{1}{\sqrt{-g}} \frac{\delta I}{\delta g^{\mu \nu}}=0 \\
& T_{r v}:=\frac{-2}{\sqrt{-g}} \frac{\delta \mathcal{L}_{I_{H}}}{\delta g^{\mu \nu}}
\end{aligned}
$$

- Backg round independence
- Cauchy Problem

$$
t>t_{0}
$$

- History:

Black hole 1960s
J. Wheeler

1915-1960s prehistory
1915-16 Sch'd static Spherecically Sym.
"Coordinate Singulany"
1937
1917 RAN.

- 1960s: . Kerr 1965 stationary
- Horizon
- Comical structure
- Observations X-ray Pulsar arty
- TOV stellar Evolution

1970s:
Theoretical:

- Thermodynamiss in presencer of houzon
Entropy

Whole Ther modyn.

- Hawking: Ein. E.P. + Q.M.

Honizon is not a one-way
Ray-tracing,
\rightarrow Radiate out.
Black body radiation

- Damian Formation of horizon
- Evaporate
- Information problem!
-1980s: Observational

