DARK MATTER

Introduction Yasaman Farzan Physics school, IPM

Standard cosmology in a nutshell

World Scientific

World Scientific

Fig. 1.9 Stages of the evolution of the Universe.

Friedmann–Lemaître–Robertson–Walker Metric

$$ds^{2} = dt^{2} - a^{2}(t)\delta_{ij}dx^{i}dx^{j}.$$
 $H(t) = \frac{\dot{a}(t)}{a(t)}.$

$$z(t) = \frac{a_0}{a(t)} - 1$$

$$z = H_0 r, \quad z \ll 1.$$

Massless particle:

$$\mathbf{p}(t) = \frac{\mathbf{k}}{a(t)}, \quad \omega(t) = \frac{k}{a(t)}$$

$$\mathbf{p}(t) = \frac{\mathbf{k}}{a(t)}, \quad \omega(t) = \frac{k}{a(t)}.$$

The number of particles in an element of comoving phase space

$$f(k)d^3\mathbf{x}d^3\mathbf{k} = \text{const.}$$

$$d^3 \mathbf{x} d^3 \mathbf{k} = d^3 (a \mathbf{x}) d^3 \left(\frac{\mathbf{k}}{a}\right) = d^3 \mathbf{X} d^3 \mathbf{p}.$$

Friedmann Equation

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}.$$

Ricci tensor,

$$R_{\mu\nu} = \partial_{\lambda}\Gamma^{\lambda}_{\mu\nu} - \partial_{\mu}\Gamma^{\lambda}_{\nu\lambda} + \Gamma^{\lambda}_{\mu\nu}\Gamma^{\sigma}_{\lambda\sigma} - \Gamma^{\lambda}_{\mu\sigma}\Gamma^{\sigma}_{\lambda\nu}$$

homogeneous and isotropic Universe,

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\varkappa}{a^2}.$$

In the spatially flat model,

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho.$$

$$f(\mathbf{p}, t) = f_i \left(\frac{a(t)}{a_i} \mathbf{p}\right).$$

$$f_i(\mathbf{p}) = f_{\text{Pl}} \left(\frac{|\mathbf{p}|}{T_i}\right) = \frac{1}{(2\pi)^3} \frac{1}{e^{|\mathbf{p}|/T_i} - 1}$$

$$T_{eff}(t) = \frac{a_i}{a(t)} T_i.$$

Fig. 1.9 Stages of the evolution of the Universe.

Non-relativistic matter ("dust")

$$p = 0.$$
 $\rho = \frac{\text{const}}{a^3}.$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{\text{const}}{a^3} \qquad a(t) = \text{const} \cdot (t - t_s)^{2/3},$$
$$H(t) = \frac{\dot{a}}{a}(t) = \frac{2}{3t}.$$

Relativistic matter ("radiation")

Vacuum

$$T_{\mu\nu} = \rho_{vac} \eta_{\mu\nu}. \qquad p = -\rho_{vac}$$

General barotropic equation of state $p = w\rho$

 $p = w\rho$,

ΛCDM: Cosmological Model with Dark Matter and Dark Energy

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G(\rho_{M} + \rho_{rad} + \rho_{\Lambda} + \rho_{curv}), \qquad \qquad \frac{8\pi}{3}G\rho_{curv} = -\frac{\varkappa}{a^{2}}$$

$$\rho_c \equiv \frac{3}{8\pi G} H_0^2.$$

$$\Omega_{M} = \frac{\rho_{M,0}}{\rho_{c}}, \quad \Omega_{rad} = \frac{\rho_{rad,0}}{\rho_{c}}, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda,0}}{\rho_{c}}, \quad \Omega_{curv} = \frac{\rho_{curv,0}}{\rho_{c}}.$$

$$\sum_{i} \Omega_{i} \equiv \Omega_{M} + \Omega_{rad} + \Omega_{\Lambda} + \Omega_{curv} = 1$$

$$H_0 = h \cdot 100 \; \frac{\mathrm{km}}{\mathrm{s} \cdot \mathrm{Mpc}},$$

 $h = 0.705 \pm 0.013.$

CMB

$$\rho_{\gamma,0} = 2 \frac{\pi^2}{30} T_0^4, \qquad T_0 = 2.726 \,\mathrm{K}.$$

$$\rho_{\gamma,0} = 2.6 \cdot 10^{-10} \frac{\text{GeV}}{\text{cm}^3},$$

0

$$\Omega_{\gamma} = 2.5 \cdot 10^{-5} h^{-2} = 5.0 \cdot 10^{-5}, \quad h = 0.705.$$

Dominant contributions

$$\Omega_M \approx 0.27, \quad \Omega_\Lambda \approx 0.73$$

$$\Omega_{M} = \Omega_{B} + \Omega_{DM}$$
$$\Omega_{B} = 0.046$$
$$\Omega_{DM} = 0.23.$$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3} G\rho_c \left[\Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_{rad} \left(\frac{a_0}{a}\right)^4 + \Omega_\Lambda + \Omega_{curv} \left(\frac{a_0}{a}\right)^2\right]$$

Transition from Deceleration to Acceleration

$$\dot{a}^{2} = \frac{8\pi}{3} G\rho_{c} \left(\frac{\Omega_{M} a_{0}^{3}}{a} + \Omega_{\Lambda} a^{2}\right).$$

$$\ddot{a} = a \frac{4\pi}{3} G\rho_{c} \left(2\Omega_{\Lambda} - \Omega_{M} \left(\frac{a_{0}}{a}\right)^{3}\right).$$

$$\left(\frac{a_{0}}{a_{ac}}\right)^{3} = \frac{2\Omega_{\Lambda}}{\Omega_{M}}, \qquad z_{ac} = \left(\frac{2\Omega_{\Lambda}}{\Omega_{M}}\right)^{1/3} - 1. \qquad \Omega_{M} = 0.27, \ \Omega_{\Lambda} = 0.73,$$

$$z_{ac} \approx 0.76.$$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3} G\rho_c \left[\Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_{rad} \left(\frac{a_0}{a}\right)^4 + \Omega_\Lambda + \Omega_{curv} \left(\frac{a_0}{a}\right)^2\right]$$

Transition from Radiation Domination to Matter Domination

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}, \qquad T_{\gamma} \equiv T. \qquad \rho_{\nu} = 3 \cdot 2 \cdot \frac{7}{8} \frac{\pi^2}{30} T_{\nu}^4,$$

$$\rho_{rad} = \rho_{\gamma} + \rho_{\nu} = \left[2 + \frac{21}{4} \left(\frac{4}{11}\right)^{4/3}\right] \frac{\pi^2}{30} T^4,$$

$$\rho_M = \left(\frac{a_0}{a}\right)^3 \Omega_M \rho_c.$$

$$1 + z_{eq} = 3.2 \cdot 10^3. \qquad T_{eq} = 0.76 \text{ eV}$$

Thermodynamics in Expanding Universe

$$A_1 + A_2 + \dots + A_n \leftrightarrow B_1 + B_2 + \dots + B_{n'},$$

$$\mu_{A_1} + \mu_{A_2} + \dots + \mu_{A_n} = \mu_{B_1} + \mu_{B_2} + \dots + \mu_{B_{n'}}.$$

$$f(\mathbf{p}) = \frac{1}{(2\pi)^3} \frac{1}{e^{(E(\mathbf{p}) - \mu)/T} \mp 1}.$$

$$\mu_{\gamma} = 0.$$

$$e^+ + e^- \leftrightarrow 2\gamma$$

$$\mu_{e^-} + \mu_{e^+} = 0.$$

 $\mu_i = 0.$

Expression (5.10) gives then the Stefan–Boltzmann law,

$$\rho_{i} = \frac{g_{i}}{2\pi^{2}} \int \frac{E^{3}}{e^{E/T} \mp 1} dE = \begin{cases} g_{i} \frac{\pi^{2}}{30} T^{4} - \text{Bose} \\ \frac{7}{8} g_{i} \frac{\pi^{2}}{30} T^{4} - \text{Fermi} \end{cases}$$

$$\rho = g_* \frac{\pi^2}{30} T^4,$$

$$g_* = \sum_{\substack{\text{bosons}\\\text{with } m \ll T}} g_i + \frac{7}{8} \sum_{\substack{\text{fermions}\\\text{with } m \ll T}} g_i$$

$$\Omega_B = \rho_B / \rho_c = m_B n_B / \rho_c,$$
$$\Omega_B h^2 \simeq 0.023, \quad \Omega_B \simeq 0.046,$$

$$n_{\gamma} = 2 \frac{\zeta(3)}{\pi^2} T_0^3 = 411 \,\mathrm{cm}^{-3}.$$

Relic Neutrinos

$$\sigma_{\nu} \sim G_F^2 E^2$$
, $G_F = 1.17 \cdot 10^{-5} \,\mathrm{GeV}^{-2}$.

$$\tau_{\nu} = \frac{1}{\langle \sigma_{\nu} n v \rangle}, \qquad \tau_{\nu} \sim \frac{1}{G_F^2 T^5}, \qquad H^{-1} = \frac{M_{Pl}^*}{T^2}.$$

$$\tau_{\nu}(T) \sim H^{-1}(T).$$
 $T_{\nu,f} \sim \left(\frac{1}{G_F^2 M_{Pl}^*}\right)^{1/3} \sim 2 - 3 \,\mathrm{MeV}.$

$$e^-e^+ \to \gamma\gamma$$

entropy conservation of the electron-photon

CMB and Neutrino distribution

 $\delta T \sim 100 \ \mu \text{K}$, i.e., $\delta T/T_0 \sim 10^{-4} - 10^{-5}$.

Neutrinos?? Structure formation. Matter – radiation equality. Neutrino velocity

Nucleosynthesis

$p + n \rightarrow D + \gamma$. $p(n, \gamma)D$. D + D $\rightarrow {}^{3}\text{He} + n$ and D + D $\rightarrow T + p$

Neutron decoupling

$$p + e \leftrightarrow n + \nu_e, \qquad \Delta m \equiv m_n - m_p = 1.3 \,\mathrm{MeV}$$

$$\tau_n = \Gamma_n^{-1}, \quad \Gamma_n = C_n G_F^2 T^5,$$

$$\Gamma_n(T) \sim H(T) = \frac{T^2}{M_{Pl}^*}. \qquad M_{Pl}^* = \frac{M_{Pl}}{1.66\sqrt{g_*}},$$
$$g_* = 2 + \frac{7}{8} \cdot 4 + \frac{7}{8} \cdot 2 \cdot N_{\nu}.$$

Dark ages and cosmic dawn

astronomical unit	au	$149597870700\mathrm{m}$
parsec $(1 \text{ au}/1 \text{ arcsec})$	pc	$3.08567758149\ldots \times 10^{16}\mathrm{m} = 3.26156\ldots \mathrm{ly}$
light year (deprecated unit)	ly	$0.306601\dots pc = 0.946073\dots \times 10^{16} m$

$$\begin{array}{ll} H_0 & 100 \ h \ {\rm km \ s^{-1} \ Mpc^{-1}} = h \times (9.777\ 752\ {\rm Gyr})^{-1} \\ h & 0.674(5) \ {\rm from \ CMB \ anisotropies \ } (Planck) \\ or \ 0.730(10) \ {\rm from \ the \ distance \ ladder \ } ({\rm SH0ES}) \end{array} \\ \end{array} \\ \begin{array}{ll} z = H_0 r, & z \ll 1, & 4 \ {\rm Gpc.} \bigstar & {\rm Z=1} \end{array} \end{array}$$

Some scales

Dark matter

Dark Matter

arXiv:2406.01705v1 [hep-ph] 3 Jun 2024

Marco Cirelli

Laboratoire de Physique Théorique et Hautes Énergies (LPTHE), CNRS & Sorbonne Université, 4 Place Jussieu, Paris, France

Alessandro Strumia

Dipartimento di Fisica dell'Università di Pisa, Italia

Jure Zupan

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Abstract

We review observational, experimental and theoretical results related to Dark Matter.

Time

hep-ph, astro-ph, hep-th, gr-qc, hep-ex, nucl-th, hep-lat,

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3} G\rho_c \left[\Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_{rad} \left(\frac{a_0}{a}\right)^4 + \Omega_\Lambda + \Omega_{curv} \left(\frac{a_0}{a}\right)^2\right].$$

$$\Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012.$$

$$\Omega_{\rm DM} = 0.264 \pm 0.003,$$

Characteristics

- Non-relativistic
- Cold
- Non-interacting and dissipationless
- Stable

Evidence for dark matter

- Galaxy scale
- Galaxy cluster scale
- Cosmological scale

Rotation curve

Rubin and Ford (1970).

Vera Rubin

$$m\frac{v_{\rm circ}^2(r)}{r} = \frac{Gm\mathcal{M}(r)}{r^2} \qquad \Rightarrow \qquad v_{\rm circ}(r) = \sqrt{\frac{G\mathcal{M}(r)}{r}}.$$

UGC03205 (denser, baryonic, more stars)

DDO161 (fainter, darker, more gas)

Midi: clusters of galaxies

velocity dispersion in the Coma cluster of galaxies,

in 1933.

Bullet cluster

bullet cluster located 3.7 Gyr

2006

The two objects collided 150 million years ago.

Harvey et al. (2015) [13] report the results on 72 of them and conclude that the existence of DM can be established with a significance of more than 7o.

$$\frac{\sigma}{M} \lesssim 1 \, \frac{\mathrm{cm}^2}{\mathrm{g}} = \frac{1.8 \, \mathrm{mb}}{\mathrm{GeV}} = \frac{4580}{\mathrm{GeV}^3},$$

Cosmic Shear

- Cosmic shear refers to the deflection of light from very distant galaxies by the gravitational attraction due to the foreground mass concentrations.
- vast filaments and loose clumps.

$$\Omega_{\rm DM} \approx 0.25.$$

Matter power spectrum

evolution ('Euler') equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) &= 0, & \text{continuity,} \\ \frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} &= -\frac{\boldsymbol{\nabla} \wp}{\rho} - \boldsymbol{\nabla} \Phi, & \text{Newton law } \boldsymbol{a} &= \boldsymbol{F}/m, \\ \nabla^2 \Phi &= 4\pi G \rho, & \text{Poisson,} \end{aligned}$$

$$\rho = \rho_0(t) + \rho_1(\boldsymbol{x}, t), \qquad \wp = \wp_0 + \wp_1, \qquad \boldsymbol{v} = \boldsymbol{v}_0 + \boldsymbol{v}_1, \qquad \Phi = \Phi_0 + \Phi_1.$$
Linear regime:
$$\begin{array}{l} \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \wp_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \wp_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \wp_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \partial \wp / \partial \rho = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \rho_1 \\ \boldsymbol{v}_s^2 = \rho_1 / \rho_1 \\ \boldsymbol{v}_s^2 = \rho_1 / \rho_1 \\ \boldsymbol{$$

Matter power spectrum

DM profiles

DM halo	Functional form		
NFW	$ ho_{ m NFW}(r)$	=	$\rho_s \frac{r_s}{r} \left(1 + \frac{r}{r_s} \right)^{-2}$
Generalized NFW	$ ho_{ m gNFW}(r)$	=	$\rho_s \left(\frac{r_s}{r}\right)^{\gamma} \left(1 + \frac{r}{r_s}\right)^{\gamma-3}$
Einasto	$ ho_{ m Ein}(r)$	=	$\rho_s \exp\left\{-\frac{2}{\alpha_{\rm Ein}} \left[\left(\frac{r}{r_s}\right)^{\alpha_{\rm Ein}} - 1\right]\right\}$
Cored Isothermal	$ ho_{ m Iso}(r)$	=	$\frac{\rho_s}{1 + \left(r/r_s\right)^2}$
Burkert	$ ho_{ m Bur}(r)$	=	$\frac{\rho_s}{(1+r/r_s)(1+(r/r_s)^2)}.$

Table 2.1: Plausible spherical density profiles $\rho(r)$ for DM halos in galaxies.

DM halo	r_s in kpc	$ ho_s$ in GeV/cm^3
NFW	14.59	0.554
Einasto	13.76	0.150
Burkert	10.66	1.134
Isothermal	4.00	2.100

Galactocentric r in kpc

 $\rho_{\odot} = \rho(r_{\odot}) = 0.40 \text{ GeV/cm}^3 \approx 0.0106 M_{\odot}/\text{pc}^3$.

$$f(v) = N e^{-v^2/v_0^2} \Theta(v_{\text{esc}} - v)$$
.

$$v_{\rm esc} \approx (544 \pm 35) \,\mathrm{km/s}$$

$$220 \,\mathrm{km/s} < v_0 < 270 \,\mathrm{km/s}$$
.

Beyond the dark spherical (and isotropic) cow limit

Non-sphericity of DM halos

Rotating DM halos

Dark disk?

Anisotropic DM velocity distribution

DM streams

DM around black holes

