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Outline

▶ Basics of the Heat kernel method/Spectral geometry
▶ Applications to Entanglement Entropy
▶ Applications to Quantum complexity



Basics of Heat Kernels

or Spectral Geometry

A good review is that by Vassilevich, hep-th/0306138.



Physics laws are usually described by some elliptic PDEs

L̂(x)u(x) = f(x) ,

where L̂ is the Laplace differential operator.
One can solve the PDE, by the impulse response, known as the
Green’s function

L̂G(x, x′) = δ(x − x′) .

then

u(x) =
∫

f(x′)G(x, x′)dx′ .



In 1937 V. Fock noted that writing the Green’s function as an
integral over an auxiliary time, we get a kernel which satisfies
the heat equation

G(x, x′) =
∫ ∞

−∞
ds K(s; x, x′) ,

then

(∂s + L̂)K(s; x, x′) = 0 ,

with initial condition

K(0; x, x′) = δ(x − x′) .



In this way, associated to each Laplace operator, a flow of an
impulse can be defined and the spectrum of a heat operator

e−sL̂

can be analyzed through a flow process.
Note that

K(s; x, x′) = ⟨x |e−sL̂|x′⟩ .

This (heat) flow certainly depends on the geometry of the base
manifold, the geometry that is deduced in this way is called
spectral geometry.



A very useful identity gives us the effective action

W =
1
2 ln det(L̂) = −1

2

∫ ∞

0

ds
s K(s) ,

where

K(s) = Tr e−sL̂ =

∫
ddx√g K(s; x, x) .

We have a simple answer to the request of regularization: just
stay away from impulse

W = −1
2

∫ ∞

ϵ

ds
s K(s) .



The trace of the heat kernel is characterized by its small s
expansion,

K(s) =
∑
p=0

ap(D̂2)s
(p−d)

2 , s → 0

where ap(D̂2) are the heat kernel coefficients that are
represented by the bulk and boundary integrals,

ap(D̂2) =

∫
M

TrAp(x) +
∫
∂M

TrBp(x) ,



In QFT, the Laplace operator takes the form of −(∇2 + E) in
various representations, for instance
▶ Scalar theory

L̂ = −(∇2− d − 2
4(d − 1)R) ,

▶ Dirac theory

L̂ = (iγµ∇µ)
2 = −(∇2 − 1

4R) ,

and so on.



A0(x) =
1

(4π)d/2 Vd ,

A2(x) =
1

6(4π)d/2

∫
M
(6E + R) ,

A4(x) =
1

360(4π)d/2

(
60□E + 12□R + 2RikjℓRikjℓ

− 2RijRij + 180E2 + 60RE + 5R2
)
,

· · ·



In particular, in QFT

• QFT with insertions → Heat flow on a manifold with
insertions

• QFT in presence of the boundary/defect → Heat flow on a
manifold with boundary/defect

• QFT with singularities → Heat flow on a manifold with
singularity
· · ·



Boundary value problem

▶ Scalar with Dirichlet b.c.

ϕ|∂M = 0 .

▶ Scalar with Robin (Generalized Neumann) b.c.

(∇n +
d − 2

2(d − 1)K )ϕ|∂M = 0

and so on.



Extrinsic geometry

External geometry is about how a boundary is embedded in a
manifold. The characteristic measure of this geometry is the
extrinsic curvature tensor

Kij = hk
i hℓj∇(knl) , K = Ki

i .



B1(x) = ∓ 1
4(4π) d−1

2
Vd ,

B2(x) =
1

6(4π)d/2

∫
∂M

(2K) ,

B(D)
3 (x) = − 1

384(4π) d−1
2

[
96E + 16R − 8Rnn − 10 Tr K2 + 7K2

]
.

B(R)
3 (x) = 1

384(4π) d−1
2

[
96E + 16R − 8Rnn + 2 Tr K2

+ 13K2 + 96SK + 192S2Φ
]
,S = − d − 2

2(d − 1)K .

· · ·



Application 1,

Entanglement Entropy in QFT

A good review can be found in the book by Rangamani & Takayanagi



EE in QM
• Consider a quantum mechanical system in a pure ground
state which is described by |ψ⟩ (ρ = |ψ⟩⟨ψ|).

• Reduced density operator:

ρA = Tr B ρ = Tr B|ψ⟩⟨ψ| .

Then the EE is

SEE(A) = −Tr ρA log ρA .



EE in QFT

SEE(Σ) =
sd−2
ϵd−2 +

sd−4
ϵd−4 + · · ·+ s0 log ϵ+ f ,

where

sd−2 ∝ Area(Σ).



Rényi entropy

In a QFT, we firstly construct the Rényi entropy as

SRE(A) =
1

1 − n log Tr ρA
n ,

The EE reads then

SEE(A) = lim
n→1

SRE(A).



Step 1, Defining the Reduced density operator in QFT
The first step is to define the wave functional of the fields

Ψ[ϕ0(x, yi)] =

∫
ϕ(xµ)|τ=0=ϕ0(x,yi)

Dϕ e−
∫

dτL[ϕ] .

Figure 1: manifold M

Then the reduced density matrix will be found as

ρ+−
A =

∫
DϕB Ψ[ϕ+A, ϕB]Ψ̄[ϕ−A, ϕB] ,



Step 2, Replica Trick

1. Making n copies

ρ+−
A,1 ρ

+−
A,2 · · · ρ

+−
A,n .

2. Identification

(x ∈ A, τ = 0+i ) ∼ (x ∈ A, τ = 0−i+1),





Partition function on Rn

Finding the RE reduces to computing the partition function on
n-sheeted Riemann surface

Tr ρ̂n
A = Z−n

1

∫
Rn

Dϕ e−
∫
Rn dτL[ϕ] ≡ Zn

Zn
1
,

then after an analytical continuation in n we will have

SEE(A) = −Tr ρ̂A log ρ̂A = −∂n log Tr ρn
A
∣∣
n=1 = −(n∂n − 1) logZn

∣∣
n=1 .

But the deficit angle α = 2π(1 − n) introduces a conical
singularity such that Rn ∼ Cn × Σ.
The main challenge: calculation on a manifold with
conical singularity?

Heat flow on a cone.



Applying the Sommerfeld formula

In two dimensions

K(x, x′, τ, τ ′; s) = 1
4πse−

1
4s [(τ−τ ′)2+(x−x′)2] ,

where in polar coordinates

(τ − τ ′)2 + (x − x′)2 = 4r2 sin2(
ϕ− ϕ′

2 ) .

Replication would be possible through changing the periodicity
of ϕ to 2πn, then we need to use the Sommerfeld formula,
suppressing the r coordinate we have

Kn(ϕ, ϕ
′; s) = K(ϕ, ϕ′; s) + i

4πn

∫
C

dω cot(
ω

2n)K(ϕ− ϕ′ + ω; s) ,



Taking the trace we get

i
4πn

∫
C

dω cot(
ω

2n)
1

4πs

∫ 2πn

0
dϕ

∫ ∞

0
rdre−

1
s r2 sin2(ω2 )

we get

i
4πn

∫
C

dω cot(
ω

2n)
n

4 sin2(ω2 )
.

By the calculus of residues we find

i
4πn

∫
C

dω cot(
ω

2n) sin
−2(

ω

2 ) =
1

3n2 (1 − n2) .

Therefore

Tr Kn(s) = Tr K(s) + 1
3n(1 − n2) .



The effective action reads

Wn = −1
2

∫ ℓ

ϵ

ds
s Tr Kn(s) =

1
6n(n

2 − 1) log
(
ℓ

ϵ

)
,

We can ultimately find the entropy as follows

SEE = (n∂n − 1)Wn|n=1 =
1
3 log

(
ℓ

ϵ

)
.



Conformal Anomaly

It tells us about the universal physical properties in the
one-loop level.

Z = e−W =

∫
DΦ e−S[Φ,g] ,

A = δσW(e2σgµν)
∣∣∣
σ=0

=

∫
Md

⟨Tµ
µ⟩ .

This is the integrated conformal anomaly.
log term in the expansion of EE is one of the universal features.



EE and conformal anomaly
Lets remind ourselves the universal logarithmic term in EE,
s0 log ϵ. Interestingly it is related to the trace anomaly in even
dimensions. To see this consider a Weyl scaling as

ℓ→ e−ωℓ ↔ gµν → e−2ωgµν ,

then

ℓ
∂

∂ℓ
(log Tr ρ̂n

A) = 2
∫

ddx gµν
δ

δgµν
[logZn − n logZ1] .

but since

Tµν =
2
√g

δS
δgµν

,

we will finally arrive at

ℓ
∂

∂ℓ
SEE(A) = lim

n→1
n∂n⟨Tµ

µ⟩Mn ∼ ⟨R⟩Mn .



Physics on the cone!

For example in 2D, ⟨Tµ
µ⟩ = − c

12R, we get

(n)R =(reg.) R + 4π(1 − n)δΣ ,

therefore, again

ℓ
∂

∂ℓ
SEE(Σ) =

c
3 → SEE(Σ) =

c
3 log

ℓ

ϵ
.



Application 2,

Quantum Complexity

Series of papers by Takayanagi et al. for instance arXiv:1706.07056.



Quantum Complexity

▶ Complexity: How complicated is it to do a task?
▶ How advanced should a circuit that implements an

algorithm be?
▶ in QM: How complicated is it to prepare a quantum state?

| ↑⟩| ↑⟩ → | ↑⟩| ↓⟩ vs. 1√
2
(| ↑⟩| ↓⟩+ | ↓⟩| ↑⟩)



Optimal arrangement of correlated nodes
Consider a grid of correlated node which are distributed in a
bulk. The correlation could be of any kind but for illustrative
purposes we may consider a multi slits thought experiment.

I have borrowed the figures from Zee’s book.



Suppose we start in an iterative process to remove the nodes
that do not contribute significantly to the signal transferring
and thus the final formed pattern. The question is that at the
end of the day, what geometry will the distribution of the nodes
give?



Therefore, our problem is reduced to the optimal heat flow on a
manifold and the weight function that measures the optimality
of different flows is the effective action.
So the question is: how to minimize effective action. This
question is closely related to the question of how to optimally
take the path integral and optimally prepare a quantum state.



State in QFT

Ψ[Φ0] =

∫ ∏
x

∏
ϵ≤z<∞

DΦe−S[Φ] × δ (Φ(z = ϵ, x)− Φ0(x)) .

ds2 = dz2 + dx2 optimization−−−−−−−→ gij(z, x) .

What is the form of gij?

I have borrowed the figure from arXiv:1706.07056 by Takayanagi et al.



complexity in 2 dimensions
In 2d all of the metrics are conformally flat

gij(z, x) = e2ϕ(dz2 + dx2) .

The question is now which ϕ optimizes the path integral?

Note:

DΦ|e2ϕηij = eSLDΦ|ηij ,

where SL is the Liouville action

SL =
c

24π

∫
d2x

(
(∂ϕ)2 + e2ϕ

)
.

In our approach

W[e(2ϕ)ηij]− W(ηij) = SL .



complexity in 2 dimensions

Optimizing the path integral, i.e. solving the e.q.m for the
Liouville action we will get

e2ϕ =
1
z2 → gij =

1
z2 (dz2 + dx2) ,

This is the time constant slice of AdS3 !

Optimization of the complexity ∼ Solving the Einstein equation



My conclusion is very simple and short:

The most symmetric is the simplest!



Thank You!


	EE in QFT

