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Introduction:  

Bilayer Graphene: Tight-binding model 

Fermi velocity modulation in graphene 

 Hamiltonian in presence of velocity modulation and gate bias: 

 Spectrum and band gap behavior 

Tunneling through velocity and electrostatic barriers:  

Optical analogous of MDFs, Wave guide designed bilayer graphene 

Conclusion 
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Monolayer Graphene 

In the Tight Binding Model:wallace1947 

Two valleys have opposite chirality 



Spectrum of Monolayer Graphene 
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Bilayer Graphene: the Tight Binding model 
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Bilayer Graphene: the Tight Binding model 

E. Mccann, et al. 2013 Rep. Prog. Phys. 76 056503 

•A bonding and anti-bonding pair arising from 
the strong coupling of the dimer B1 and A2 sites. 
•The ‘low-energy’ bands arise from hopping 
between the non-dimer A1 and B2 sites. 
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Effective 4-band Hamiltonian at low energy 
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Effective two band model 

for non-dimer sites 

Massive Chiral electrons 
with parabolic dispersion 

Trigonal Warping 

Production of a Band Gap  

Electron-hole asymmetry 

LE 

E. Mccann, et al. 2013 Rep. Prog. Phys. 76 056503 



Tunable Band gap in Bilayer Graphene 

Y. Zhang, et al, Nature, 2009 



Velocity Modulation in Graphene 

There are several ways to engineer Fermi velocity : 

-   e-e interaction 

- Modifications in curvature of graphene sheet 

- Periodic potential (Graphene superlattices) 

- Appropriate doping 

- Dielectric screening 

- Strain 

 

 

Phys. Rev. Lett. 108, 227205 (2012) 

Nano Lett., 2010, 10 (9), pp 3486–3489 



Dirac cones reshaped by interaction effects in 
suspended graphene 

106 10at  /103  nsmvF

Renormalization Group Theory confirms experimental results 

Non-local interband exchange leads to a renormalized Fermi velocity (G. Borghi, et al, SSC, 2009) 

Weak interaction                                                                          P. E. Trevisanutto, et al, PRL, 2008 

 Strong interaction                                                                       C-H Park, et al, Nanolett.  2009  
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Elias D C et al 2011 Nature Phys. 7 701 



Fermi velocity engineering by substrate modification 

C. Hwang, et al, Nature Scientific Reports, 590 (2012) 

An increase of slope around -0.5 eV 



Anisotropic behaviors of massless Dirac fermions  
in graphene under periodic potential 

Park C H et al 2008 Nature Phys. 4 213 



Dirac Cone has been also observed in  

other honeycomb crystals: 

- Acoustic surface waves (PRL2012) 

- Photonic Crystals (nature 2012) 

 

Making massless Dirac fermions  
from patterned 2DEG 



Many-body renormalized  Fermi velocity 
 induced by remote metallic gates 

• Consider a grounded metal plane placed close to a 

graphene sheet.  

• Quasiparticles under the screening plane move at a speed v* 

that is smaller than in an isolated graphene sheet 

A. Rauox, et al, PRB,81, 073407 (2010) 



Bilayer graphene in presence of effective velocity 
modulation: Hamiltonian  

We consider the following dominant Four-band Hamiltonian: 
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are eigen-function of Hamiltonian  

H.C, F. Adinehvand, JPCM, 26, 015302 (2014) 



Bilayer graphene in presence of effective velocity 
modulation: Spectrum  
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There are two extremum conditions: Band Gap Conditions 
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At k=0, the gap is independent of the velocity ratio. 

Results in the energy gap 



Gapless spectrum in presence of interlayer  
asymmetry in velocity but for  

 Chiral symmetry is still conserved. 

 Only interlayer asymmetry in velocity 

 is not able to break the electron–hole 

symmetry. 

 Spectrum is robust against  
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Band structure in presence of interlayer asymmetry in 
potential but symmetry in velocity: direct band gap 
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 e-h symmetry 

 Symmetric conduction and valence band 
edges 
Momentum at the band edges  
The gap is independent of velocity 
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Band structure in presence of interlayer asymmetry in 
potential and velocity: e-h asymmetry 

0,1  

e-h asymmetry: 
Indirect Band gap  
The gap depends on      instead of 
velocities  
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e-h asymmetric factor caused by Full Hamiltonian: 
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the e–h asymmetry arising from the velocity 

engineering is a dominant factor compared 

with the e–h asymmetry caused by the 

parameter    4



Band structure in presence of interlayer asymmetry in 
potential and velocity: indirect band gap 

Indirectness of the band gap: 
vc kkk 
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Band structure in presence of interlayer asymmetry in 
potential and velocity: Saturated indirect band gap 
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Indirectness of the gap can be  
manipulated by the gate bias. 

the dependence of the energy gap on the velocity ratio can be 

manifested in transport properties through a velocity junction. 



Analogy between MDF transport and light propagation 

 MDF’s velocity is independent of the wavelength, the same as the 

speed of light. 

 The optical-like behaviors of electron waves in graphene such as 

focusing, collimation, Bragg reflection, electron wave-guides, total 

internal reflection. 

electron wave-guides Spin lensing total internal reflection 

A. G. Moghaddam, M. Zareyan, PRL2010 J. Yuan, et al, APL2011 A. Rauox, et al, PRB2010 



Transport properties across non-uniform 
potential and velocity junctions: transfer matrix method 

• Current density operator 

 

 

 

 

Auxiliary Spinor 

• Transfer Matrix Method 

Assuming a plane wave solution for 

the Hamiltonian: 
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Transport properties across non-uniform 
potential and velocity junctions: transfer matrix method 
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Transport properties across non-uniform 
potential and velocity junctions: wave function 
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Transport across a single pure velocity barrier 
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Transport across a single pure velocity barrier 

Propagating Modes (PM) 

PM+EM 

Resonance Condition 



Transport across multiple structure of  
pure velocity barriers 
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Transport across velocity barrier 
 in presence of a gate bias 
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Transport gap depends on the velocity ratio 
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Conclusion 

• The chiral symmetry is conserved for pure velocity modulation            . 

• In the broken-symmetry BLG, e-h symmetry preserved whenever the 
same velocity is modulated in both layers           . In this case, the band 
gap is direct. 

• In the broken-symmetry BLG  and non-equal velocities in two layers  
result in a transition of the direct to indirect band gap. The electron–
hole symmetry fails. Indirectness increases with the gate bias. 

• In analogy with optics, we propose a total internal reflection angle.  

• The transport gap which is induced by application of the gate bias in the 
barrier region depends on the velocity ratio. 
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Transmission through a barrier on bilayer 
graphene 
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