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The!electronic!structure!of!graphene!is!rather!different!from!usual!three5dimensional!
materials.!Its!Fermi!surface!is!characterized!by!six!double!cones,!as!shown!in!Figure!2.!In!
intrinsic!(undoped)!graphene!the!Fermi!level!is!situated!at!the!connection!points!of!these!
cones.!Since!the!density!of!states!of!the!material!is!zero!at!that!point,!the!electrical!
conductivity!of!intrinsic!graphene!is!quite!low!and!is!of!the!order!of!the!conductance!
quantum!

�

� ~ e2 /h ;!the!exact!prefactor!is!still!debated.!The!Fermi!level!can!however!be!
changed!by!an!electric!field!so!that!the!material!becomes!either!n5doped!(with!electrons)!or!
p5doped!(with!holes)!depending!on!the!polarity!of!the!applied!field.!Graphene!can!also!be!
doped!by!adsorbing,!for!example,!water!or!ammonia!on!its!surface.!The!electrical!
conductivity!for!doped!graphene!is!potentially!quite!high,!at!room!temperature!it!may!even!
be!higher!than!that!of!copper.!

Close!to!the!Fermi!level!the!dispersion!relation!for!electrons!and!holes!is!linear.!Since!the!
effective!masses!are!given!by!the!curvature!of!the!energy!bands,!this!corresponds!to!zero!
effective!mass.!The!equation!describing!the!excitations!in!graphene!is!formally!identical!to!
the!Dirac!equation!for!massless!fermions!which!travel!at!a!constant!speed.!The!connection!
points!of!the!cones!are!therefore!called!Dirac!points.!This!gives!rise!to!interesting!analogies!
between!graphene!and!particle!physics,!which!are!valid!for!energies!up!to!approximately!1!
eV,!where!the!dispersion!relation!starts!to!be!nonlinear.!One!result!of!this!special!dispersion!
relation,!is!that!the!quantum!Hall!effect!becomes!unusual!in!graphene,!see!Figure!4.!!

!

Figure!2.!The!energy,!E,!for!the!excitations!in!graphene!as!a!function!of!the!wave!numbers,!kx!
and!ky,!in!the!x!and!y!directions.!The!black!line!represents!the!Fermi!energy!for!an!undoped!
graphene!crystal.!Close!to!this!Fermi!level!the!energy!spectrum!is!characterized!by!six!double!
cones! where! the! dispersion! relation! (energy! versus! momentum,! �k)! is! linear.! This!
corresponds!to!massless!excitations.!

http://nobelprize.org/
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Tunable electron and hole dopings



Polini et al., SSC (2007)

Tunable electron and hole dopings



Polini et al., SSC (2007)

Tunable electron and hole dopings

graphene p-n junction
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n-type up-spin & p-type down-
spin carriers

(Some) exotic properties of spin-polarized graphene:!
• Josephson coupling through FM-G: Moghaddam, Zareyan, PRB (2008)!

• Andreev-Klein reflection in FM-G: Zareyan, Mohammadpour, Moghadam, PRB (2008)!

• Spin-lensing in FM-G: Moghaddam, Zareyan, PRL (2010)!

• RKKY interaction in FM-G: Parhizghar, Asgari, SAH, Zareyan, PRB (2013)
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Semi-classical theory of charge transport 

j = �E

� =
ne2⌧

mb
Drude model:

relaxation time!

in equilibrium f = nFD 
and j=0

j = e
X

k,i

vk,ifi(k, r, t)



f(k) = nFD("k) + �f(k)out-of-equilibrium:

Semi-classical theory of charge transport (cont.)
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f(k) = nFD("k) + �f(k)out-of-equilibrium:

Semi-classical theory of charge transport (cont.)

Boltzmann & relaxation time approximations:
✓
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(Fermi’s Golden rule)
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Transport in spin-polarized graphene (cont.)

Zare, Moghaddam, SAH, Abdizadeh, Zareyan, PRB (2013)
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Optical Hall conductivity in spin-polarized 
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Optical Hall conductivity (cont.)

no

N. M. R. Peres et al.

Fig. 1: (Color online) A photon of frequency ω creates a
particle-hole pair around the Dirac point. The electronic states
with energy between −µ and +µ are blocked transitions due
to the Pauli exclusion principle. In the figure the phonon
frequency ω0 is assumed to be smaller than µ. Light with
energy 2× (ω0+µ) leads to the generation of an anti-Stokes
emission. The Stokes emission with energy 2× |µ−ω0| lies in
the forbidden region.

impurities and the response of the system deviates
substantially from the non-interacting clean picture
described above. This deviation in turn will illuminate
the importance of the several scattering mechanisms
present in the system.
Phonons of frequency ω0 can be either absorbed or

emitted by the Dirac electrons. When these phonons
are at the center of the Brillouin zone (Γ point) they
can be probed by Raman spectroscopy [1], playing an
analogous role as light in an A.C. conductivity experiment,
that is, creation of particle-hole pairs [18]. Furthermore,
impurities play a fundamental role at low energies since
it is known that they produce strong broadening of the
linewidths [10]. We stress once more, as in the case of
D.C. transport, that the impurity broadening has to be
calculated self-consistently.
In this paper we compute σ(ω, µ) taking into account

the combined effect of impurities and phonons. We assume
that there is a density nCi of charge impurities per
carbon which might be trapped in the substrate (the
silicon oxide), on top of graphene, or in the interface of
graphene and the substrate. We model the screening of
charge impurities via the random phase approximation
(RPA) together with the coherent potential approximation
(CPA), which gives us the self-consistent density of states.
We also assume a density ni of unitary scatterers that exist
due to structural disorder (edge defects, cracks, vacancies,
etc.). The effect of unitary scatterers is only important
in producing a finite density of states at the Dirac point
and this can be obtained with arbitrarily small values of
ni. We assume throughout the paper that impurities are
dilute and the structural disorder is very weak, that is,
1≫ nCi ≫ ni→ 0.

We have checked that the effect of in-plane acoustic
phonons is negligible and they will be ignored in what
follows. We assume that the coupling of graphene to the
substrate is strong enough to shift the flexural phonon
frequencies away from the infrared regime, allowing us to
ignore them for the moment being1. Hence, we have kept
only the optical phonon modes. The phonon frequency,
and the value of the electron-phonon coupling is fixed
from Raman experiments [1] and therefore they are not
fitting parameters here. In fact, we have only one fitting
parameter, namely, nCi which will be determined to be
nCi ∼ 0.5× 1012 cm−2, in complete agreement with current
experimental estimates [8]. In fact, the importance of
impurities in the dispersion of graphene have been appre-
ciated experimentally [19].

Model Hamiltonian. – The Hamiltonian has the
form:

H =H0+Hph.+He-ph.+Himp., (1)

where

H0 =−t
∑

R,σ

∑

δ

(
a†σ(R)bσ(R+ δ)+h.c.

)
(2)

is the nearest-neighbor tight-binding kinetic energy where
a†σ(R) (b

†
σ(R+ δ3)) creates an electron on site R of sub-

lattice A(B) with spin σ (σ=↑, ↓), t (≈ 3 eV) is the
hopping energy and δ are the nearest-neighbor vectors [2].
The phonon Hamiltonian has the form [20–24]:

Hph. =
∑

R

{
P2A(R)

2MC
+
P2B(R+ δ3)

2MC

+
∑

δ

α

2a2
[(uA(R)−uB(R+ δ)) · δ]2

+
∑

δ

βa2

2
[cos(θ(R, δ))− cos(θ0)]2

}

, (3)

where uA,B are the displacements of the A(B) atoms
from equilibrium (PA,B the momentum operator), MC
(= 12 a.u.) is the carbon mass, α (≈ 500N/m) is the
stretching elastic constant, θ(R, δ) = θijk is the angle
formed between the i -j bond and the i -k bond (θ0 = 120◦

is the equilibrium angle) and β (≈ 10N/m) is the
in-plane bending elastic constant (a= 1.42 Å is the
carbon-carbon distance). Although (3) describes both
acoustic and optical phonon modes, we focus on the
optical modes which can be written as:

v(R) = (uA(R)−uB(R+ δ3))/
√
2, (4)

with frequency ω20=3(α+9β/2)/MC≈0.2 eV (≈1600 cm−1)
[21].

1The effect of flexural modes can be analyzed in a similar way
but it will introduce new free parameters that have to be adjusted
experimentally. Here, we simplify by considering a single adjustable
parameter.

38002-p2

Peres et al., EPL (2008)
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and the value of the electron-phonon coupling is fixed
from Raman experiments [1] and therefore they are not
fitting parameters here. In fact, we have only one fitting
parameter, namely, nCi which will be determined to be
nCi ∼ 0.5× 1012 cm−2, in complete agreement with current
experimental estimates [8]. In fact, the importance of
impurities in the dispersion of graphene have been appre-
ciated experimentally [19].

Model Hamiltonian. – The Hamiltonian has the
form:

H =H0+Hph.+He-ph.+Himp., (1)

where

H0 =−t
∑

R,σ

∑

δ

(
a†σ(R)bσ(R+ δ)+h.c.

)
(2)

is the nearest-neighbor tight-binding kinetic energy where
a†σ(R) (b

†
σ(R+ δ3)) creates an electron on site R of sub-

lattice A(B) with spin σ (σ=↑, ↓), t (≈ 3 eV) is the
hopping energy and δ are the nearest-neighbor vectors [2].
The phonon Hamiltonian has the form [20–24]:

Hph. =
∑

R

{
P2A(R)

2MC
+
P2B(R+ δ3)

2MC

+
∑

δ

α

2a2
[(uA(R)−uB(R+ δ)) · δ]2

+
∑

δ

βa2

2
[cos(θ(R, δ))− cos(θ0)]2

}

, (3)

where uA,B are the displacements of the A(B) atoms
from equilibrium (PA,B the momentum operator), MC
(= 12 a.u.) is the carbon mass, α (≈ 500N/m) is the
stretching elastic constant, θ(R, δ) = θijk is the angle
formed between the i -j bond and the i -k bond (θ0 = 120◦

is the equilibrium angle) and β (≈ 10N/m) is the
in-plane bending elastic constant (a= 1.42 Å is the
carbon-carbon distance). Although (3) describes both
acoustic and optical phonon modes, we focus on the
optical modes which can be written as:

v(R) = (uA(R)−uB(R+ δ3))/
√
2, (4)

with frequency ω20=3(α+9β/2)/MC≈0.2 eV (≈1600 cm−1)
[21].

1The effect of flexural modes can be analyzed in a similar way
but it will introduce new free parameters that have to be adjusted
experimentally. Here, we simplify by considering a single adjustable
parameter.
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Fig. 1: (Color online) A photon of frequency ω creates a
particle-hole pair around the Dirac point. The electronic states
with energy between −µ and +µ are blocked transitions due
to the Pauli exclusion principle. In the figure the phonon
frequency ω0 is assumed to be smaller than µ. Light with
energy 2× (ω0+µ) leads to the generation of an anti-Stokes
emission. The Stokes emission with energy 2× |µ−ω0| lies in
the forbidden region.

impurities and the response of the system deviates
substantially from the non-interacting clean picture
described above. This deviation in turn will illuminate
the importance of the several scattering mechanisms
present in the system.
Phonons of frequency ω0 can be either absorbed or

emitted by the Dirac electrons. When these phonons
are at the center of the Brillouin zone (Γ point) they
can be probed by Raman spectroscopy [1], playing an
analogous role as light in an A.C. conductivity experiment,
that is, creation of particle-hole pairs [18]. Furthermore,
impurities play a fundamental role at low energies since
it is known that they produce strong broadening of the
linewidths [10]. We stress once more, as in the case of
D.C. transport, that the impurity broadening has to be
calculated self-consistently.
In this paper we compute σ(ω, µ) taking into account

the combined effect of impurities and phonons. We assume
that there is a density nCi of charge impurities per
carbon which might be trapped in the substrate (the
silicon oxide), on top of graphene, or in the interface of
graphene and the substrate. We model the screening of
charge impurities via the random phase approximation
(RPA) together with the coherent potential approximation
(CPA), which gives us the self-consistent density of states.
We also assume a density ni of unitary scatterers that exist
due to structural disorder (edge defects, cracks, vacancies,
etc.). The effect of unitary scatterers is only important
in producing a finite density of states at the Dirac point
and this can be obtained with arbitrarily small values of
ni. We assume throughout the paper that impurities are
dilute and the structural disorder is very weak, that is,
1≫ nCi ≫ ni→ 0.

We have checked that the effect of in-plane acoustic
phonons is negligible and they will be ignored in what
follows. We assume that the coupling of graphene to the
substrate is strong enough to shift the flexural phonon
frequencies away from the infrared regime, allowing us to
ignore them for the moment being1. Hence, we have kept
only the optical phonon modes. The phonon frequency,
and the value of the electron-phonon coupling is fixed
from Raman experiments [1] and therefore they are not
fitting parameters here. In fact, we have only one fitting
parameter, namely, nCi which will be determined to be
nCi ∼ 0.5× 1012 cm−2, in complete agreement with current
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(= 12 a.u.) is the carbon mass, α (≈ 500N/m) is the
stretching elastic constant, θ(R, δ) = θijk is the angle
formed between the i -j bond and the i -k bond (θ0 = 120◦

is the equilibrium angle) and β (≈ 10N/m) is the
in-plane bending elastic constant (a= 1.42 Å is the
carbon-carbon distance). Although (3) describes both
acoustic and optical phonon modes, we focus on the
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Fig. 1: (Color online) A photon of frequency ω creates a
particle-hole pair around the Dirac point. The electronic states
with energy between −µ and +µ are blocked transitions due
to the Pauli exclusion principle. In the figure the phonon
frequency ω0 is assumed to be smaller than µ. Light with
energy 2× (ω0+µ) leads to the generation of an anti-Stokes
emission. The Stokes emission with energy 2× |µ−ω0| lies in
the forbidden region.

impurities and the response of the system deviates
substantially from the non-interacting clean picture
described above. This deviation in turn will illuminate
the importance of the several scattering mechanisms
present in the system.
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are at the center of the Brillouin zone (Γ point) they
can be probed by Raman spectroscopy [1], playing an
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it is known that they produce strong broadening of the
linewidths [10]. We stress once more, as in the case of
D.C. transport, that the impurity broadening has to be
calculated self-consistently.
In this paper we compute σ(ω, µ) taking into account

the combined effect of impurities and phonons. We assume
that there is a density nCi of charge impurities per
carbon which might be trapped in the substrate (the
silicon oxide), on top of graphene, or in the interface of
graphene and the substrate. We model the screening of
charge impurities via the random phase approximation
(RPA) together with the coherent potential approximation
(CPA), which gives us the self-consistent density of states.
We also assume a density ni of unitary scatterers that exist
due to structural disorder (edge defects, cracks, vacancies,
etc.). The effect of unitary scatterers is only important
in producing a finite density of states at the Dirac point
and this can be obtained with arbitrarily small values of
ni. We assume throughout the paper that impurities are
dilute and the structural disorder is very weak, that is,
1≫ nCi ≫ ni→ 0.

We have checked that the effect of in-plane acoustic
phonons is negligible and they will be ignored in what
follows. We assume that the coupling of graphene to the
substrate is strong enough to shift the flexural phonon
frequencies away from the infrared regime, allowing us to
ignore them for the moment being1. Hence, we have kept
only the optical phonon modes. The phonon frequency,
and the value of the electron-phonon coupling is fixed
from Raman experiments [1] and therefore they are not
fitting parameters here. In fact, we have only one fitting
parameter, namely, nCi which will be determined to be
nCi ∼ 0.5× 1012 cm−2, in complete agreement with current
experimental estimates [8]. In fact, the importance of
impurities in the dispersion of graphene have been appre-
ciated experimentally [19].

Model Hamiltonian. – The Hamiltonian has the
form:
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where uA,B are the displacements of the A(B) atoms
from equilibrium (PA,B the momentum operator), MC
(= 12 a.u.) is the carbon mass, α (≈ 500N/m) is the
stretching elastic constant, θ(R, δ) = θijk is the angle
formed between the i -j bond and the i -k bond (θ0 = 120◦

is the equilibrium angle) and β (≈ 10N/m) is the
in-plane bending elastic constant (a= 1.42 Å is the
carbon-carbon distance). Although (3) describes both
acoustic and optical phonon modes, we focus on the
optical modes which can be written as:

v(R) = (uA(R)−uB(R+ δ3))/
√
2, (4)

with frequency ω20=3(α+9β/2)/MC≈0.2 eV (≈1600 cm−1)
[21].
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Conclusions
electron and hole like nature of the up and down 
spins in graphene results in a bunch of interesting 
phenomena: 
!

• spin-flip scattering from magnetic impurities 
gives rise to a Kondo-like behavior in the 
electrical conductivity! 

• QSH effect! in spin polarized graphene! 
• Control of the spin-Coulomb drag (spin-current 

dissipation) with an exchange field!
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