Nonrelativistic, non-Newtonian gravity

Dieter Van den Bleeken Boğaziçi University

based on arXiv:1512.03799 and work in progress with Çağın Yunus

IPM Tehran

27th May 2016

Nonrelativistic, non-Newtonian gravity

Gravity in various regimes

Nonrelativistic, non-Newtonian gravity

Gravity in various regimes

Outline

- Motivation
- From NG towards GR
- NC gravity/geometry
- From GR to NC
- $NC \supseteq NG$
 - → dimensional reduction in NC
- From GR to TTNC
- Example

Legend

NG = Newtonian Gravity GR = General Relativity

NC = Newton-Cartan TT = Twistless Torsional

Outline

- Motivation
- From NG towards GR
- NC gravity/geometry
- From GR to NC
- NC ⊋ NG
 → dimensional reduction in NC
- From GR to TTNC
- Example

[Cartan; Trautman; Kunzl]
Review
[Dautcourt; Tichy, Flanagan]

Related work
[Afshar, Bergshoeff,
Hartong et al.]

New

Legend

 $NG = Newtonian Gravity \qquad GR = General Relativity$ $<math>NC = Newton-Cartan \qquad TT = Twistless Torsional$

Motivation

- Isn't GR our best theory of gravity?
 - → our most complicated theory of gravity all aproximation schemes are welcome

Motivation

- Isn't GR our best theory of gravity?
 - ightarrow our most complicated theory of gravity all aproximation schemes are welcome
- Why nonrelativistic?
 - \star c is quite large in SI units more recently
 - * condensed matter on non-flat backgrounds
 - * non-relativistic holography

Motivation

- Isn't GR our best theory of gravity?
 - → our most complicated theory of gravity all aproximation schemes are welcome
- Why nonrelativistic?
 - \star c is quite large in SI units more recently
 - * condensed matter on non-flat backgrounds
 - * non-relativistic holography
- Why non-Newtonian?
 - * analytic description of strong gravity!

isn't this an empty set? actually, no...

is this a physically relevant regime?

wasn't this done 50 years ago? please let me know!

From NG towards GR

From NG towards GR

Geometrize Newtonian gravity

From NG towards GR

Geometrize Newtonian gravity

$$ec{a}=-ec{
abla}\Phi$$
 \Leftrightarrow geodesic equation
$$\begin{picture}(1,0) \put(0,0){\line(0,0){100}} \put(0$$

⇒ covariantize this: Newton-Cartan geometry/gravity

Newton-Cartan geometry/gravity

Geometry

fields:
$$au_{\mu}\,, \quad h^{\mu
u}\,, \quad \Gamma^{\lambda}_{\mu
u}$$

constraints:

$$\tau_{\mu}h^{\mu\nu} = 0, \quad h^{[\mu\nu]} = 0, \quad \Gamma^{\lambda}_{[\mu\nu]} = 0$$

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0$$

$$h^{\lambda(\mu}R^{\nu)}{}_{\lambda\rho\sigma}(\Gamma) = 0$$

Newton-Cartan geometry/gravity

Geometry

fields: $au_{\mu}\,, \quad h^{\mu
u}\,, \quad \Gamma^{\lambda}_{\mu
u}$

constraints:

$$\tau_{\mu}h^{\mu\nu} = 0, \quad h^{[\mu\nu]} = 0, \quad \Gamma^{\lambda}_{[\mu\nu]} = 0$$

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0$$

$$h^{\lambda(\mu}R^{\nu)}{}_{\lambda\rho\sigma}(\Gamma) = 0$$

Gravity

EOM: $R_{\mu\nu}(\Gamma) = \tau_{\mu}\tau_{\nu}\,\rho$

Newton-Cartan geometry/gravity

Geometry

fields: $au_{\mu}\,,\quad h^{\mu\nu}\,,\quad \Gamma^{\lambda}_{\mu\nu}$

constraints:

$$\tau_{\mu}h^{\mu\nu} = 0, \quad h^{[\mu\nu]} = 0, \quad \Gamma^{\lambda}_{[\mu\nu]} = 0$$

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0$$

$$h^{\lambda(\mu}R^{\nu)}{}_{\lambda\rho\sigma}(\Gamma) = 0$$

Gravity

EOM: $R_{\mu\nu}(\Gamma) = \tau_{\mu}\tau_{\nu} \rho$

Manifest 1+3 dim coordinate invariance

Equal to Newtonian gravity when

$$\tau_{\mu} = \delta_{\mu}^{0}, \ h^{\mu 0} = 0, \ h^{ij} = \delta^{ij}, \ \Gamma_{0i}^{j} = 0$$

ullet Large c expansion

$$g_{\mu\nu}(c) = \sum_{i=-1}^{\infty} \overset{(2i)}{g}_{\mu\nu} c^{-2i} \qquad g^{\mu\nu}(c) = \sum_{i=0}^{\infty} \overset{(2i)}{g}^{\mu\nu} c^{-2i}$$
 Ansatz: $\overset{(-2)}{g}_{\mu\nu} = -\tau_{\mu}\tau_{\nu}$ (natural via $x^0 = ct$)

Large c expansion

$$g_{\mu\nu}(c) = \sum_{i=-1}^{\infty} {g \atop \mu\nu} c^{-2i} \qquad g^{\mu\nu}(c) = \sum_{i=0}^{\infty} {g \atop g}^{(2i)} \mu\nu c^{-2i}$$
 Ansatz: ${g \atop \mu\nu} = -\tau_{\mu}\tau_{\nu}$ (natural via $x^0 = ct$)

Solving invertibility leads to

$$\begin{array}{l} \overset{(0)}{g}{}^{\mu\nu} = h^{\mu\nu} \\ \overset{(0)}{g}{}_{\mu\nu} = 2\tau_{(\mu}C_{\nu)} + h_{\mu\nu} \qquad \overset{(2)}{g}{}^{\mu\nu} = -\tau^{\mu}\tau^{\nu} + 2\tau^{(\mu}h^{\nu)\lambda}C_{\lambda} \\ \text{where} \qquad \tau^{\mu}\tau_{\nu} + h^{\mu\lambda}h_{\lambda\nu} = \delta^{\mu}_{\nu} \end{array}$$

Large c expansion

$$g_{\mu\nu}(c) = \sum_{i=-1}^{\infty} {g \choose \mu\nu} c^{-2i} \qquad g^{\mu\nu}(c) = \sum_{i=0}^{\infty} {g \choose \mu\nu} c^{-2i}$$
 Ansatz: $g^{\mu\nu}(c) = \sum_{i=0}^{\infty} {g \choose \mu\nu} c^{-2i}$ (natural via $x^0 = ct$)

Solving invertibility leads to

$$\begin{array}{l} \overset{(0)}{g}{}^{\mu\nu} = h^{\mu\nu} \\ \overset{(0)}{g}{}_{\mu\nu} = 2\tau_{(\mu}C_{\nu)} + h_{\mu\nu} & \overset{(2)}{g}{}^{\mu\nu} = -\tau^{\mu}\tau^{\nu} + 2\tau^{(\mu}h^{\nu)\lambda}C_{\lambda} \\ \\ \text{where} & \tau^{\mu}\tau_{\nu} + h^{\mu\lambda}h_{\lambda\nu} = \delta^{\mu}_{\nu} \end{array}$$

Metric compatibility & finite Levi-Civita implies that

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0 \qquad K_{\mu\nu} = 2\partial_{[\mu}C_{\nu]}$$
$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}h^{\lambda\rho}\left(\partial_{\mu}h_{\rho\nu} + \partial_{\nu}h_{\mu\rho} - \partial_{\rho}h_{\mu\nu}\right) + \tau^{\lambda}\partial_{(\mu}\tau_{\nu)} + h^{\lambda\rho}\tau_{(\mu}K_{\nu)\rho}$$

Expand Einstein equations

(for perfect fluid)

$$\overset{\mbox{\tiny (-4)}}{R}_{\mu\nu} = \overset{\mbox{\tiny (-2)}}{R}_{\mu\nu} = 0$$
 — automatic

$$R_{\mu\nu}^{(0)} = \mathcal{T}_{\mu\nu} \quad \Leftrightarrow \quad [R_{\mu\nu}(\Gamma) = \rho \, \tau_{\mu} \tau_{\nu}]$$

$$c \ll LT^{-1}$$

$$c \gg LT^{-1}$$

$$\Box k_{\mu\nu}^{(1)} = -\frac{1}{c^4} T_{\mu\nu}^{(0)}$$

$$G_{\mu\nu} = \frac{G_{\rm N}}{c^4} T_{\mu\nu}$$

$$\triangle \Phi = \rho$$

$$R_{\mu\nu}(\Gamma) = \rho \tau_{\mu} \tau_{\nu}$$

$$G_{\rm N} \ll L^5 T^{-3}$$

$$G_{\rm N}\gg L^5T^{-3}$$

The dof's of NC manifest themselves after partial gauge-fixing ${\sf Diff}_4 \to {\sf Diff}_3(t)$

$$R_{ij} = 0$$

$$-\nabla^j K_{ji} = 2h^{jk} \nabla_{[i} \dot{h}_{j]k}$$

$$-\nabla^i G_i = \frac{1}{2} h^{ij} \ddot{h}_{ij} + \frac{1}{4} \dot{h}_{ij} \dot{h}^{ij} - \frac{1}{4} K_{ij} K^{ij} + 4\pi \rho$$
where $G_i = -\partial_i \Phi - \dot{C}_i$ $\Phi = -C_0$

The dof's of NC manifest themselves after partial gauge-fixing ${\sf Diff}_4 o {\sf Diff}_3(t)$

$$R_{ij} = 0$$

$$-\nabla^j K_{ji} = 2h^{jk} \nabla_{[i} \dot{h}_{j]k}$$

$$-\nabla^i G_i = \frac{1}{2} h^{ij} \ddot{h}_{ij} + \frac{1}{4} \dot{h}_{ij} \dot{h}^{ij} - \frac{1}{4} K_{ij} K^{ij} + 4\pi \rho$$
where $G_i = -\partial_i \Phi - \dot{C}_i$ $\Phi = -C_0$

Standard argument:

- 1) In 3d Ricci flat = flat
- 2) C_i is harmonic, hence constant
- 3) NC=NG

Conclusion: nonrelativistic non-Newtonian gravity doesn't exist

The dof's of NC manifest themselves after partial gauge-fixing ${\sf Diff}_4 o {\sf Diff}_3(t)$

$$\begin{array}{rcl} R_{ij}&=&0\\ -\nabla^j K_{ji}&=&2h^{jk}\nabla_{[i}\dot{h}_{j]k}\\ -\nabla^i G_i&=&\frac{1}{2}h^{ij}\ddot{h}_{ij}+\frac{1}{4}\dot{h}_{ij}\dot{h}^{ij}-\frac{1}{4}K_{ij}K^{ij}+4\pi\rho\\ \end{array}$$
 where $G_i=-\partial_i\Phi-\dot{C}_i$ $\Phi=-C_0$

Standard argument:

- 1) In 3d Ricci flat = flat
- 2) C_i is harmonic, hence constant
- 3) NC=NG

The dof's of NC manifest themselves after partial gauge-fixing ${\sf Diff}_4 o {\sf Diff}_3(t)$

$$R_{ij} = 0$$

$$-\nabla^j K_{ji} = 2h^{jk} \nabla_{[i} \dot{h}_{j]k}$$

$$-\nabla^i G_i = \frac{1}{2} h^{ij} \ddot{h}_{ij} + \frac{1}{4} \dot{h}_{ij} \dot{h}^{ij} - \frac{1}{4} K_{ij} K^{ij} + 4\pi \rho$$
 where
$$G_i = -\partial_i \Phi - \dot{C}_i \qquad \Phi = -C_0$$

Standard argument:

- 2) C_i is harmonic, hence constant
- 3) NC=NG

Newton - Cartan \supseteq Newtonian Gravity

The dof's of NC manifest themselves after partial gauge-fixing $\mathsf{Diff}_4 \to \mathsf{Diff}_3(t)$

$$R_{ij} = 0$$

$$-\nabla^j K_{ji} = 2h^{jk} \nabla_{[i} \dot{h}_{j]k}$$

$$-\nabla^i G_i = \frac{1}{2} h^{ij} \ddot{h}_{ij} + \frac{1}{4} \dot{h}_{ij} \dot{h}^{ij} - \frac{1}{4} K_{ij} K^{ij} + 4\pi \rho$$
where $G_i = -\partial_i \Phi - \dot{C}_i$ $\Phi = -C_0$

Standard argument:

What about other energy-momentum?

- 1) In 3d Ricci flat \longrightarrow What about higher dimensions?
- 2) C_i is harmonic, hence constant
- 3) NC=NG

Newton - Cartan \supseteq Newtonian Gravity

The dof's of NC manifest themselves after partial gauge-fixing ${\sf Diff}_4 o {\sf Diff}_3(t)$

$$R_{ij} = 0$$

$$-\nabla^j K_{ji} = 2h^{jk} \nabla_{[i} \dot{h}_{j]k}$$

$$-\nabla^i G_i = \frac{1}{2} h^{ij} \ddot{h}_{ij} + \frac{1}{4} \dot{h}_{ij} \dot{h}^{ij} - \frac{1}{4} K_{ij} K^{ij} + 4\pi \rho$$
where $G_i = -\partial_i \Phi - \dot{C}_i$ $\Phi = -C_0$

Standard argument:

What about other energy-momentum?

- 1) In 3d Ricci flat = flat
- ``... What about higher dimensions?...
- 2) C_i is harmonic, hence constant
- 3) NC=NG

dimensional reduction

Newton - Cartan \supseteq Newtonian Gravity

dimensional reduction

We showed

[arXiv: 1512.03799]

Here is NCMD

$$\nabla_{i}\partial^{i}\Omega = \frac{1}{4}\Omega^{3}F_{ij}F^{ij} \qquad \nabla_{i}\left(\Omega^{3}E^{i}\right) = \frac{1}{2}\Omega^{3}K_{ij}F^{ij} \qquad \nabla_{i}\left(\Omega^{3}F^{ij}\right) = 0$$

$$\Omega R_{ij} = \nabla_{i}\partial_{j}\Omega + \frac{1}{2}\Omega^{3}F_{i}{}^{k}F_{jk}$$

$$\nabla_{j}\left(\Omega K^{j}{}_{i}\right) = -\Omega\partial_{i}(h^{jk}\dot{h}_{jk}) + \nabla^{j}(\Omega\dot{h}_{ij}) - 2\partial_{i}\dot{\Omega} + \Omega^{3}F_{ij}E^{j}$$

$$-\nabla_{i}\left(\Omega G^{i}\right) = \frac{1}{4}\Omega\left(\dot{h}^{ij}\dot{h}_{ij} - K_{ij}K^{ij} + 2h^{ij}\ddot{h}_{ij}\right) + \frac{1}{2}\Omega^{3}E_{i}E^{i} + \ddot{\Omega}$$

$$c \gg LT^{-1}$$

$$\Box k_{\mu\nu}^{(1)} = -\frac{1}{c^4} T_{\mu\nu}^{(0)}$$

$$\triangle \Phi = \rho$$

$$G_{
m N}\ll L^5T^{-3}$$

$$G_{\mu\nu} = \frac{G_{\rm N}}{c^4} T_{\mu\nu}$$

$$R_{\mu\nu}(\Gamma) = \rho \tau_{\mu} \tau_{\nu}$$

$$G_{
m N}\gg L^5T^{-3}$$

$$c \gg LT^{-1}$$

$$\Box k_{\mu\nu}^{(1)} = -\frac{1}{c^4} T_{\mu\nu}^{(0)}$$

$$\triangle \Phi = \rho$$

$$G_{\rm N} \ll L^5 T^{-3}$$

$$G_{\mu\nu} = \frac{G_{\rm N}}{c^4} T_{\mu\nu}$$

$$R_{\mu\nu}(\Gamma) = \rho \tau_{\mu} \tau_{\nu}$$

$$G_{
m N}\gg L^5T^{-3}$$

- Large c expansion \checkmark
- Solving invertibility
- Metric compatibility & finite Levi-Civita implies that

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0 \qquad K_{\mu\nu} = 2\partial_{[\mu}C_{\nu]}$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}h^{\lambda\rho}\left(\partial_{\mu}h_{\rho\nu} + \partial_{\nu}h_{\mu\rho} - \partial_{\rho}h_{\mu\nu}\right) + \tau^{\lambda}\partial_{(\mu}\tau_{\nu)} + h^{\lambda\rho}\tau_{(\mu}K_{\nu)\rho}$$

- Large c expansion \checkmark
- Solving invertibility
- Metric compatibility & finite Levi-Civita implies that

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0 \qquad K_{\mu\nu} = 2\partial_{[\mu}C_{\nu]}$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}h^{\lambda\rho}\left(\partial_{\mu}h_{\rho\nu} + \partial_{\nu}h_{\mu\rho} - \partial_{\rho}h_{\mu\nu}\right) + \tau^{\lambda}\partial_{(\mu}\tau_{\nu)} + h^{\lambda\rho}\tau_{(\mu}K_{\nu)\rho} + \tau^{\lambda}\partial_{[\mu}\tau_{\nu]} + h^{\lambda\rho}\left(C_{\mu}\partial_{[\nu}\tau_{\rho]} + C_{\nu}\partial_{[\mu}\tau_{\rho]} - C_{\rho}\partial_{[\mu}\tau_{\nu]}\right)$$

Torsional Newton - Cartan geometry

- Large c expansion \checkmark
- Solving invertibility
- Metric compatibility & finite Levi-Civita implies that

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0 \qquad K_{\mu\nu} = 2\partial_{[\mu}C_{\nu]}$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}h^{\lambda\rho}\left(\partial_{\mu}h_{\rho\nu} + \partial_{\nu}h_{\mu\rho} - \partial_{\rho}h_{\mu\nu}\right) + \tau^{\lambda}\partial_{(\mu}\tau_{\nu)} + h^{\lambda\rho}\tau_{(\mu}K_{\nu)\rho} + \tau^{\lambda}\partial_{[\mu}\tau_{\nu]} + h^{\lambda\rho}\left(C_{\mu}\partial_{[\nu}\tau_{\rho]} + C_{\nu}\partial_{[\mu}\tau_{\rho]} - C_{\rho}\partial_{[\mu}\tau_{\nu]}\right)$$

Expanding Einstein equations

$$R_{\mu\nu}^{\text{\tiny (-4)}} = 0 \quad \Leftrightarrow \quad \tau_{[\mu}\partial_{\nu}\tau_{\lambda]} = 0 \quad \Leftrightarrow \quad \partial_{[\mu}\tau_{\nu]} = \tau_{[\mu}a_{\nu]}$$

Twistless Torsional NC geometry

- Large c expansion \checkmark
- Solving invertibility
- Metric compatibility & finite Levi-Civita implies that

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0 \qquad K_{\mu\nu} = 2\partial_{[\mu}C_{\nu]}$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}h^{\lambda\rho}\left(\partial_{\mu}h_{\rho\nu} + \partial_{\nu}h_{\mu\rho} - \partial_{\rho}h_{\mu\nu}\right) + \tau^{\lambda}\partial_{(\mu}\tau_{\nu)} + h^{\lambda\rho}\tau_{(\mu}K_{\nu)\rho} + \tau^{\lambda}\partial_{[\mu}\tau_{\nu]} + h^{\lambda\rho}\left(C_{\mu}\partial_{[\nu}\tau_{\rho]} + C_{\nu}\partial_{[\mu}\tau_{\rho]} - C_{\rho}\partial_{[\mu}\tau_{\nu]}\right)$$

Expanding Einstein equations

$$R_{\mu\nu}^{\text{\tiny (-4)}} = 0 \quad \Leftrightarrow \quad \tau_{[\mu}\partial_{\nu}\tau_{\lambda]} = 0 \quad \Leftrightarrow \quad \partial_{[\mu}\tau_{\nu]} = \tau_{[\mu}a_{\nu]}$$

$$R_{\mu\nu}^{\text{\tiny (-2)}} = \tau_{\mu}\tau_{\nu}D_{\rho}a^{\rho} \qquad D_{\mu} = \nabla_{\mu} - a_{\mu}$$

- Large c expansion \checkmark
- Solving invertibility
- Metric compatibility & finite Levi-Civita implies that

$$\nabla_{\mu}\tau_{\nu} = 0 \qquad \nabla_{\mu}h^{\nu\lambda} = 0 \qquad K_{\mu\nu} = 2\partial_{[\mu}C_{\nu]}$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}h^{\lambda\rho}\left(\partial_{\mu}h_{\rho\nu} + \partial_{\nu}h_{\mu\rho} - \partial_{\rho}h_{\mu\nu}\right) + \tau^{\lambda}\partial_{(\mu}\tau_{\nu)} + h^{\lambda\rho}\tau_{(\mu}K_{\nu)\rho}$$

$$+\tau^{\lambda}\partial_{[\mu}\tau_{\nu]} + h^{\lambda\rho}\left(C_{\mu}\partial_{[\nu}\tau_{\rho]} + C_{\nu}\partial_{[\mu}\tau_{\rho]} - C_{\rho}\partial_{[\mu}\tau_{\nu]}\right)$$

Expanding Einstein equations

$$\begin{split} R_{\mu\nu}^{^{(-4)}} &= 0 \quad \Leftrightarrow \quad \tau_{[\mu} \partial_{\nu} \tau_{\lambda]} = 0 \quad \Leftrightarrow \quad \partial_{[\mu} \tau_{\nu]} = \tau_{[\mu} a_{\nu]} \\ R_{\mu\nu}^{^{(-2)}} &= \tau_{\mu} \tau_{\nu} \, D_{\rho} a^{\rho} \qquad \qquad D_{\mu} = \overset{^{(\text{nc})}}{\nabla}_{\mu} - a_{\mu} \\ R_{\mu\nu}^{^{(0)}} &= \overset{^{(\text{nc})}}{R}_{\mu\nu} + D^{\rho} \Big(\hat{h}_{\rho\nu} \hat{a}_{\mu} \Big) - \frac{1}{2} a^{\rho} \overset{^{(\text{nc})}}{\nabla}_{\rho} \hat{h}_{\mu\nu} - a_{\rho} \tau_{(\mu} \overset{^{(\text{nc})}}{\nabla}_{\nu)} \hat{\tau}^{\rho} + \frac{1}{2} \tau_{\mu} \tau_{\nu} a^{2} \hat{\tau}^{2} \end{split}$$

Schwarzschild

$$ds^{2} = -c^{2} \left(1 - \frac{2m}{c^{2} r} \right) dt^{2} + \left(1 - \frac{2m}{c^{2} r} \right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$
$$= -c^{2} dt^{2} + \frac{2m}{r} dt^{2} + dr^{2} + r^{2} d\Omega^{2} + \mathcal{O}(c^{-2})$$

Schwarzschild

$$ds^{2} = -c^{2} \left(1 - \frac{2m}{c^{2} r} \right) dt^{2} + \left(1 - \frac{2m}{c^{2} r} \right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$
$$= -c^{2} dt^{2} + \frac{2m}{r} dt^{2} + dr^{2} + r^{2} d\Omega^{2} + \mathcal{O}(c^{-2})$$

$$\left(\tau_0 = 1, \ \tau_i = 0 \qquad h_{ij} = \delta_{ij}, \ h_{\mu 0} = 0 \qquad C_0 = \frac{m}{r}, \ C_i = 0\right)$$

Schwarzschild

$$ds^{2} = -c^{2} \left(1 - \frac{2m}{c^{2} r} \right) dt^{2} + \left(1 - \frac{2m}{c^{2} r} \right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$
$$= -c^{2} dt^{2} + \frac{2m}{r} dt^{2} + dr^{2} + r^{2} d\Omega^{2} + \mathcal{O}(c^{-2})$$

$$\left[\tau_0 = 1, \ \tau_i = 0 \qquad h_{ij} = \delta_{ij}, \ h_{\mu 0} = 0 \qquad C_0 = \frac{m}{r}, \ C_i = 0\right]$$

- This solves NC eom
- $\Phi = C_0 = \frac{m}{r}$ Newtonian gravity of point mass
- $d\tau = 0 \Rightarrow a_{\mu} = 0$ no torsion

Schwarzschild (extremely massive)

$$ds^{2} = -c^{2} \left(1 - \frac{2M}{r} \right) dt^{2} + \left(1 - \frac{2M}{r} \right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$

Schwarzschild (extremely massive)

$$ds^{2} = -c^{2} \left(1 - \frac{2M}{r} \right) dt^{2} + \left(1 - \frac{2M}{r} \right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$

$$\tau_{\mu} = \left(1 - \frac{2M}{r}\right)^{1/2} \delta_{\mu}^{t}, \quad h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \left(1 - \frac{2M}{r}\right)^{-1} & 0 & 0 \\ 0 & 0 & r^{2} & 0 \\ 0 & 0 & 0 & r^{2} \sin^{2} \theta \end{pmatrix} \quad C_{\mu} = 0$$

Schwarzschild (extremely massive)

$$ds^{2} = -c^{2} \left(1 - \frac{2M}{r} \right) dt^{2} + \left(1 - \frac{2M}{r} \right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$

$$\tau_{\mu} = \left(1 - \frac{2M}{r}\right)^{1/2} \delta_{\mu}^{t}, \quad h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \left(1 - \frac{2M}{r}\right)^{-1} & 0 & 0 \\ 0 & 0 & r^{2} & 0 \\ 0 & 0 & 0 & r^{2} \sin^{2} \theta \end{pmatrix} \quad C_{\mu} = 0$$

- This solves TTNC eom
- $\Phi = C_0 = 0$ vanishing Newtonian potential!
- $d\tau \neq 0 \Rightarrow a_{\mu} = -\frac{M}{r^2} \left(1 \frac{2M}{r}\right)^{-1} \delta_{\mu}^{r}$ non-vanishing torsion!
- curved spatial geometry!

Nonrelativistic non-Newtonian gravity

Summary & outlook

Two punch lines:

- nonrelativistic gravity is more than a Newtonian potential
- Appearance of TTNC out of GR

In progress/to do:

- precise relation with bottom up TTNC
- add energy momentum
- gauge fixed version
- precise physical interpretation
- real world applications?

Gaussian normal coordinates

There always exist coordinates such that (on a patch)

$$ds^2 = -c^2 d\sigma^2 + g_{ij} dx^i dx^j$$

⇒ doesn't that imply we can always remove the torsion?

Gaussian normal coordinates

There always exist coordinates such that (on a patch)

$$ds^2 = -c^2 d\sigma^2 + g_{ij} dx^i dx^j$$

⇒ doesn't that imply we can always remove the torsion?

The transformation to GN coordinates is not compatible with (standard) large c expansion

Schwarzschild (extremely massive)

$$ds^{2} = -c^{2}d\sigma^{2} + \frac{2M}{r(\sigma,\rho)}d\rho^{2} + r(\sigma,\rho)^{2}d\Omega^{2}$$
$$= -c^{2}d\sigma^{2} + c^{4/3}\left(\frac{9}{2}M\right)^{2/3}\sigma^{4/3}d\Omega^{2} + \mathcal{O}(c^{1/3})$$

$$r(\sigma, \rho) = \left(-\frac{3}{2}\sqrt{2M}(c\sigma + \rho)\right)^{2/3}$$