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Thermalization in QGP

Collision of  two heavy 
nuclei (Gold or Lead) at the 
relativistic speed 

  

Production of  an 
Anisotropic Plasma 

Hydrodynamics applies after 
a very short time-scale, 1 fm 

Strongly Coupled Plasma 
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Figure 2.5: Sketch of the collision of two nuclei, shown in the transverse plane perpendicular to the
beam. The collision region is limited to the interaction almond in the center of the transverse plane.
Spectator nucleons located in the white regions of the nuclei do not participate in the collision. Figure
taken from Ref. [60].

short direction of the almond as they are in the long direction. And, as we shall see, it turns
out that ideal hydrodynamics does a surprisingly good job of describing these asymmetric
explosions of the matter produced in heavy ion collisions with nonzero impact parameter.
This has implications which are su⇤ciently interesting that they motivate our describing this
story in considerable detail over the course of this entire Section. We close this introduction
with a sketch of these implications.

First, the agreement between data and ideal hydrodynamics teaches us that the viscosity
� of the fluid produced in heavy ion collisions must be low. � enters in the dimensionless
ratio �/s, with s the entropy density, and it is �/s that is constrained to be small. A
fluid that is close to the ideal hydrodynamic limit, with small �/s, requires strong coupling
between the fluid constituents. Small �/s means that momentum is not easily transported
over distances that are long compared to � s�1/3, which means that there can be no well-
defined quasiparticles with long mean free paths in a low viscosity fluid since if they existed,
they would transport momentum and damp out shear flows. No particles with long mean
free paths means strongly coupled constituents.

Second, we learn that the strong coupling between partons that results in approximate
local equilibration and fluid flow close to that described by ideal hydrodynamics must set
in very soon after the initial collision. If partons moved with significant mean free paths
for many fm of time after the collision, delaying equilibration for many fm, the almond
would circularize to a significant degree during this initial period of time and the azimuthal
momentum asymmetry generated by any later period of hydrodynamic behavior would be
less than observed. When this argument is made quantitative, the conclusion is that RHIC
collisions produce strongly coupled fluid in approximate local thermal equilibrium within
close to or even somewhat less than 1 fm after the collision [61].2

2Reaching approximate local thermal equilibrium and hence hydrodynamic behavior within less than 1
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Ultracold atomic gases well 
suited for quantum quench 
experiments: 

possibility of  rapid quantum 
quench by dynamically varying 
microscopic Hamiltonian 
parameters 

near perfect isolation from 
environment

Cold Atom Systems:

Condensation Dynamics in a Quantum-Quenched Bose Gas

Robert P. Smith, Scott Beattie, Stuart Moulder, Robert L. D. Campbell, and Zoran Hadzibabic
Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Received 19 December 2011; revised manuscript received 18 May 2012; published 6 September 2012)

By quenching the strength of interactions in a partially condensed Bose gas, we create a ‘‘super-

saturated’’ vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the

number of condensed atoms (N0) grows even though the temperature (T) rises and the total atom number

decays. We show that the nonequilibrium evolution of the system is isoenergetic and, for small initial N0,

observe a clear separation between T and N0 dynamics, thus explicitly demonstrating the theoretically

expected ‘‘two-step’’ picture of condensate growth. For increasing initial N0 values, we observe a

crossover to classical relaxation dynamics. The size of the observed quench-induced effects can be

explained using a simple equation of state for an interacting harmonically trapped atomic gas.

DOI: 10.1103/PhysRevLett.109.105301 PACS numbers: 67.85.De, 03.75.Kk

The nonequilibrium dynamics of interacting quantum
systems is generally far less understood than the corre-
sponding equilibrium many-body states [1]. Of particular
interest is the many-body dynamics of both the order
parameter and the excitations in a system close to a phase
transition. From a theoretical point of view, a clean and
well defined way to induce and study nonequilibrium
quantum dynamics is a rapid ‘‘quantum quench’’ [2] of a
single Hamiltonian parameter. Ultracold atomic gases are
very well suited for such quantum quench experiments. In
addition to the possibility to dynamically vary microscopic
Hamiltonian parameters, they feature near-perfect isola-
tion from the environment and characteristic many-body
time scales (ranging from ms to s) that are experimentally
resolvable and allow real-time nonequilibrium studies.

In this Letter, we introduce a quantum quench of the
interaction strength in an atomic Bose gas as a tool to study
the dynamics of Bose-Einstein condensation [3–15].
Earlier experiments highlighted the importance of bosonic
stimulation in condensate formation [10], but could not
quantitatively address the theoretically debated interplay
of thermal energy redistribution and condensate develop-
ment [3–9]. The use of a quantum quench of the interaction
strength allows us to study these two processes in parallel.
The quench induces a growth of the condensed atom
number in a degenerate gas without any removal of thermal
energy; we explain this effect with a simple theoretical
model and experimentally study its real-time dynamics.
We explicitly show that the post-quench nonequilibrium
evolution of the system is isoenergetic, and directly reveal
the theoretically postulated ‘‘two-step’’ picture of con-
densation [4–7]. As expected, close to the critical point
the growth of the condensed atom number lags behind the
energy redistribution in the thermal component of the gas.
Moving away from the critical point, we also observe a
crossover to effectively one-step condensation dynamics
governed by a classical relaxation process.

In an ideal Bose gas the number of condensed atoms,N0,
depends only on the total atom number N and the tempera-
ture T. In a partially condensed cloud at a given T the
number of atoms in the thermal component,N0, is saturated
at the critical value for condensation, NcðTÞ, and we have
N0 ¼ N $ Nc. In experiments on harmonically trapped
atomic gases the interactions, characterized by the
s-wave scattering length a, change this picture in two
ways (see Fig. 1). First, they induce a shift of the critical
value Ncða; TÞ, which was accurately measured in
Ref. [16]. Second, the thermal component is not satu-
rated—the presence of the condensate allows N0 to grow
above Nc [17]. Taking these effects into account, near the
critical point we can write the equation of state for an
interacting atomic gas in thermal equilibrium [18]:

N ¼ Nc þ S0N
2=5
0 þ N0: (1)

FIG. 1 (color online). Inducing nonequilibrium dynamics by a
quantum quench of the interaction strength. The equilibrium
condensed atom number N0, calculated according to Eq. (1), is
plotted versus the total atom number N for a fixed temperature
T ¼ 200 nK, our trapping parameters, and different scattering
lengths a. The arrow indicates the direction of the quench. The
three absorption images of atomic clouds released from the trap
show the growth of the condensate (central dark red spot) over
& 1 s following an a ¼ 275 ! 62a0 quench.

PRL 109, 105301 (2012) P HY S I CA L R EV I EW LE T T E R S
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What are the organizing principles for out-of-equilibrium 
systems?


Theoretical progress has been made for variety systems; 2d CFT, free field, 
integrable models.

Still seeking more applicable techniques.

Perhaps re-organization of the problem will lead to new insights.


Focus on field theories with holographic dual. Two dual theories 
are just different descriptions of the same physical system.  


What can AdS/CFT correspondence offer?


strongly coupled field theories

real-time analysis

finite temperature

general space-time dimensions



Holographic Out-of-Equilibrium Systems:

There are two methods to produce out-of-equilibriums systems: 

In the gauge/gravity framework these correspond to: 
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1 Introduction

Consider quantum mechanics with a Hamiltonian which depends on some external

parameter λ,

Hλ = H0 + λ δH . (1.1)

The dynamics of the system induced by variations in λ is well-understood, e.g., , see [1].

In particular, consider beginning with λ = 0 and preparing the system in an energy

eigenstate of the Hamiltonian H0. If the new coupling is turned on adiabatically, the

system continues in an eigenstate with a time-dependent energy which simply traces

2

the changes in λ(t). In contrast, if the coupling is abruptly turned on, e.g., λ = λ0 θ(t),

the system would evolve forward in a complicated linear superposition of eigenstates

of the new Hamiltonian. While the description of adiabatically evolving couplings

is easily adapted to quantum field theory (QFT) [2], the description of the latter

‘quantum quenches’ is less well understood in the context. However, it has become the

subject of a vigorous research program motivated by the recent advances in cold atom

experiments [3–5].

Gauge/gravity duality [6] provides a remarkable framework for the study of certain

strongly coupled gauge theories. Although the most applications of this correspondence

have been directed at analyzing the static properties of the boundary theories, there

is no conceptual obstacle in applying this holographic framework to time dependant

problems and in particular, to the study of quantum quenches [7]. In fact, early

attention was given to the related question of describing ‘thermalization’ within this

holographic framework [8] and motivated by connections with the strongly coupled

quark-gluon plasma, there has been a renewed interest in this subject [9–12]. However,

given the complexities of the bulk description of rapid changes in the boundary theory,

numerical relativity is increasingly being applied to study these ‘far from equilibrium’

situations [13–19].

In this paper we begin a study of quenches in the strongly couple N = 2∗ gauge

theory [20–22] applying the techniques of numerical relativity. Recall that N = 2∗

gauge theory is obtained as a deformation of the N = 4 super-Yang-Mills (SYM),

where a N = 2 hypermultiplet acquires a mass m. For technical reasons, we will limit

our present investigation to ‘thermal quenches,’ where the initial state is a thermal

state, i.e., the N = 2∗ theory is prepared in a microcanonical ensemble, and we work

to leading order in in a high temperature expansion with m ≪ T .1 As explained

in [25], in such a thermal state, we can split the masses of the bosonic and the fermionic

components of the massive hypermultiplet. Hence we investigate two separate classes

of thermal quenches with

LSYM + λ∆(t) O∆ , (1.2)

where we may have either the bosonic mass operator O2 or the fermionic mass operator

O3 (with dimensions ∆ = 2 and 3, respectively). Of course, the couplings which vary

in time are then simply the corresponding masses, i.e., λ2 = m2
b and λ3 = mf . In

1Thermodynamics of N = 2∗ plasma was discussed in [23–26].

3
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5.1 Gauge/gravity duality 117

32 Killing spinors which generate fermionic isometries. These can be split into two
groups that match those of the gauge theory.1

We therefore conclude that the global symmetries are the same on both sides
of the duality. It is important to note, however, that on the gravity side the global
symmetries arise as large gauge transformations. In this sense there is a correspon-
dence between global symmetries in the gauge theory and gauge symmetries in the
dual string theory. This is an important general feature of all known gauge/gravity
dualities, to which we will return below after discussing the field/operator cor-
respondence. It is also consistent with the general belief that the only conserved
charges in a theory of quantum gravity are those associated with global symmetries
that arise as large gauge transformations.

5.1.4 Matching the spectrum: the field/operator correspondence

We now consider the mapping between the spectra of the two theories. To motivate
the main idea, we begin by recalling that the SYM coupling constant g2 is identified
(up to a constant) with the string coupling constant gs . As discussed below (4.15),
in string theory this is given by gs = e!∞ , where !∞ is the value of the dilaton at
infinity, in this case at the AdS boundary, ∂AdS. This suggests that deforming the
gauge theory by changing the value of a coupling constant corresponds to changing
the value of a bulk field at ∂AdS. More generally, one may imagine deforming the
gauge theory action as

S → S +
∫

d4x φ(x)O(x) , (5.13)

where O(x) is a local, gauge-invariant operator and φ(x) is a possibly point-
dependent coupling, namely a source. If φ(x) is constant, then the deformation
above corresponds to simply changing the coupling for the operator O(x). The
example of g suggests that to each possible source φ(x) for each possible local,
gauge-invariant operator O(x) there must correspond a dual bulk field !(x, z)
(and vice versa) such that its value at the AdS boundary may be identified with
the source, namely:

φ(x) = !|∂Ad S (x) ≡ lim
z→0

zα!!(x, z) . (5.14)

The power α! in the last expression is chosen so that the limit is well-defined, and
is thus determined by the boundary asymptotic behavior of !(x, z). The explicit
asymptotic behavior of various types of fields, and hence the values of their α!,
will be discussed below and in the next subsection.
1 In both boundary and bulk, bosonic and fermionic symmetries combine together to form a supergroup

SU (2, 2|4).
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118 A duality toolbox

This one-to-one map between bulk fields in AdS and local, gauge-invariant oper-
ators in the gauge theory is known as the field/operator correspondence. The field
and the operator must have the same quantum numbers under the global symme-
tries of the theory, but there is no completely general and systematic recipe to
identify the field dual to a given operator. Fortunately, an additional restriction is
known for a very important set of operators in any gauge theory: conserved cur-
rents associated to global symmetries, such as the SO(6) symmetry in the case of
the N = 4 SYM theory. The source aµ(x) coupling to a conserved current J µ(x) as

∫
d4x aµ(x)J µ(x) (5.15)

may be thought of as an external background gauge field, and we can view it as the
boundary value of a dynamical gauge field AM(x, z) in AdS, i.e.

aµ(x) = lim
z→0

Aµ(z, x) , (5.16)

meaning that, in the notation of (5.14), a gauge field has αA = 0. The identifi-
cation (5.16) is natural given that, as we discussed in Section 5.1.3, continuous
global symmetries in the boundary theory should correspond to large gauge trans-
formations in the bulk. This identification will be confirmed below by examining
the asymptotic behavior of Aµ near the boundary, see (5.32) and the discussion
around it.

An especially important set of conserved currents in any translationally invariant
theory are those encapsulated in the energy–momentum tensor operator T µν(x).
The source hµν(x) coupling to T µν(x) as

∫
d4x hµν(x)T µν(x) (5.17)

can be interpreted as a deformation of the boundary spacetime metric. In the
absence of any such boundary metric deformation, from (5.3) we see that
the asymptotic AdS bulk metric gµν and the boundary Minkowski metric are
related by

gµν(z, x) → R2

z2
ηµν, z → 0 . (5.18)

In the presence of a boundary metric deformation hµν it is thus natural to relate the
full boundary metric g(b)

µν = ηµν + hµν to the bulk metric as

g(b)
µν (x) = lim

z→0

z2

R2
gµν(z, x) , (5.19)

meaning that for the metric αg = 2. The relation (5.19) should also be valid for hµν

which is not infinitesimal, i.e. for a general curved boundary metric. Given (5.17),
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Time-Dependent Coupling on the Boundary

Non-Normalizable Mode of  the Bulk Field Dual to the 
Corresponding Operator

Deforming the SYM Action:

The strongly coupled field theory evolves to an equilibrium state.

The evolution in the bulk is described by Einstein equations plus 
other present field equations of motion.

Equilibrium state 
is field theory is 

dual to static black 
hole at 

temperature T. 
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Strong coupling isotropization of non-Abelian plasmas simplified
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We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of
its gravity dual. We compare the time evolution of a large number of initially anisotropic states as
determined, on the one hand, by the full non-linear Einstein’s equations and, on the other, by the
Einstein’s equations linearized around the final equilibrium state. The linear approximation works
remarkably well even for states that exhibit large anisotropies. For example, it predicts with a 20%
accuracy the isotropization time, which is of the order of t

iso

. 1/T , with T the final equilibrium
temperature. We comment on possible extensions to less symmetric situations.

1. Introduction. Motivated by the strongly coupled
nature of the quark-gluon plasma, much has been learned
about the (near) equilibrium properties of strongly cou-
pled plasmas by employing their dual description as a
(slightly perturbed) static black hole (see [1] and refer-
ences therein).

The formation and far-from-equilibrium evolution of a
plasma correspond on the gravity side to the formation
of a far-from-equilibrium black hole and its subsequent
relaxation. An outstanding problem in this context is
understanding the short isotropization time of the quark-
gluon plasma. In principle, studying this problem on the
gravity side requires solving the full nonlinear Einstein’s
equations (EEQs), which typically can be done only nu-
merically. Examples of such numerical studies include
[2]-[7].

One of our purposes is to show that the problem on the
gravity side can be simplified, at least in certain circum-
stances. Inspiration comes from the so-called ‘close limit
approximation’ (CLA) [8] in the context of black hole
mergers in four-dimensional general relativity in asymp-
totically flat spacetime. The CLA is the statement that,
once a single horizon forms around the two incident black
holes, its subsequent evolution is well described by the
EEQs linearized around the final equilibrium black hole,
despite the fact that the initial horizon may or may not
seem to be a small perturbation of the final one. In par-
ticular, the form of the gravitational radiation emitted
to infinity in the merger-plus-ring-down phase is well de-
scribed by the CLA [9].

Following [3], we study isotropization of a homoge-
neous plasma in a four-dimensional conformal field the-
ory (CFT) in flat Minkowski space; on the gravity side
this means that we work in the Poincaré patch of AdS5.
Note that, because of the homogeneity, the isotropization
process involves exclusively non-hydrodynamic modes.
Ref. [3] ‘creates’ a far-from-equilibrium state by acting
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FIG. 1: (a) Setup of Ref. [3]. (b) Our setup. The initial state
is specified on a t = const. surface spanned by the radial
coordinate r — see eqn. (3).

on the CFT vacuum with an external anisotropic source
(see Fig. 1). In contrast, we study the isotropization of a
large number of anisotropic initial states in the absence of
external sources (see [5, 10] for related work). Each state
is specified on the gravity side by an entire function on
an initial-time slice (ITS), and hence it is characterized
by an arbitrary number of scales.

In this Letter we focus on the time evolution of the ex-
pectation value of the gauge theory stress tensor; other
observables will be considered elsewhere. Conservation
of the stress tensor for a homogeneous plasma in the ab-
sence of external sources implies that the energy density
E (but not the entropy density) must be constant in time.
Consequently, the final equilibrium state is known with-
out solving for the dynamical evolution. On the CFT
side it is a homogeneous, isotropic plasma with temper-
ature / E1/4 and pressure E/3, with E the initial energy
density. On the gravity side it is a static, isotropic black
brane with the same temperature. This makes the lin-
ear approximation (LA) particularly simple: we linearize
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118 A duality toolbox

This one-to-one map between bulk fields in AdS and local, gauge-invariant oper-
ators in the gauge theory is known as the field/operator correspondence. The field
and the operator must have the same quantum numbers under the global symme-
tries of the theory, but there is no completely general and systematic recipe to
identify the field dual to a given operator. Fortunately, an additional restriction is
known for a very important set of operators in any gauge theory: conserved cur-
rents associated to global symmetries, such as the SO(6) symmetry in the case of
the N = 4 SYM theory. The source aµ(x) coupling to a conserved current J µ(x) as

∫
d4x aµ(x)J µ(x) (5.15)

may be thought of as an external background gauge field, and we can view it as the
boundary value of a dynamical gauge field AM(x, z) in AdS, i.e.

aµ(x) = lim
z→0

Aµ(z, x) , (5.16)

meaning that, in the notation of (5.14), a gauge field has αA = 0. The identifi-
cation (5.16) is natural given that, as we discussed in Section 5.1.3, continuous
global symmetries in the boundary theory should correspond to large gauge trans-
formations in the bulk. This identification will be confirmed below by examining
the asymptotic behavior of Aµ near the boundary, see (5.32) and the discussion
around it.

An especially important set of conserved currents in any translationally invariant
theory are those encapsulated in the energy–momentum tensor operator T µν(x).
The source hµν(x) coupling to T µν(x) as

∫
d4x hµν(x)T µν(x) (5.17)

can be interpreted as a deformation of the boundary spacetime metric. In the
absence of any such boundary metric deformation, from (5.3) we see that
the asymptotic AdS bulk metric gµν and the boundary Minkowski metric are
related by

gµν(z, x) → R2

z2
ηµν, z → 0 . (5.18)

In the presence of a boundary metric deformation hµν it is thus natural to relate the
full boundary metric g(b)

µν = ηµν + hµν to the bulk metric as

g(b)
µν (x) = lim

z→0

z2

R2
gµν(z, x) , (5.19)

meaning that for the metric αg = 2. The relation (5.19) should also be valid for hµν

which is not infinitesimal, i.e. for a general curved boundary metric. Given (5.17),
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no time-dependent source pumping energy into the system
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We are interested in an unforced relaxation to the thermal state. 

One needs to specify the initial out-of-equilibrium state. 
Initial state in the field theory is dual to bulk field configurations on 
an initial time-slice. 
The form of  the bulk metric is determined by the ansatz for the 
boundary stress tensor: 

homogeneity assumption; not preceded by a hydrodynamic phase 

rotational symmetry in two of the space-like directions

flatness of the boundary metric


The most general conserved and traceless stress tensor is: 

process in which non-equilibrium states were obtained by placing the boundary theory in

a time-dependent metric for a finite period of time.

The form of the bulk metric is determined to a large extent by the ansatz for the

boundary stress tensor. After imposing for simplicity rotational symmetry in two of the

spacelike directions and taking into account the flatness of the boundary metric, the most

general conserved and traceless stress tensor can be written as

hTµ⌫i = N

2

c

2⇡2

diag
h
E , PL(t), PT(t), PT(t)

i
, (2.1)

where Nc is the rank of the SU(Nc) gauge group and E is proportional to the energy

density. The longitudinal PL(t) and transverse pressures PT(t) are then expressed in terms

of a time-dependent anisotropy �P(t) through

PL(t) = 1

3

E � 2

3

�P(t) , (2.2)

PT(t) = 1

3

E + 1

3

�P(t) . (2.3)

Note that the energy density in our setup is constant in time by virtue of the homogeneity

assumption plus the conservation of the stress tensor. In this sense the energy density is

part of the initial conditions. As the only possible static state with finite energy density is

the isotropic and homogeneous plasma [28], the final state is known already from the start,

without the need to solve any dynamical equation. This seems to be a rather non-generic

feature of our setup, which we discuss at length in the conclusions section.

The symmetries of the stress tensor – through the general near-boundary form of

the metric in the Fe↵erman-Graham coordinates [29] – suggest the ansatz for the dual

metric gab with gtt, gLL and gTT components being dynamical, i.e. obtained by solving the

equations of motion.1 The freedom of defining what is meant by the bulk time t and the

radial coordinate in AdS r has to be then (partly) fixed by imposing the form of the grr

and gtr components.

In our analysis it will be very convenient to follow [5] and express the dual metric gab

in the generalized ingoing Eddington-Finkelstein coordinates

ds

2 = 2dtdr �Adt

2 + ⌃2

e

�2B
dx

2

L + ⌃2

e

B
dx2

T , (2.4)

where A, ⌃ and B are functions of time t and the radial coordinate r. With this ansatz

grr = 0 and gtr = 1. In the ingoing Eddington-Finkelstein coordinates, constant time slices

are null hypersurfaces as radial ingoing null geodesics, by construction, penetrate the bulk

instantaneously.

The metric (2.4) has to solve the Einstein’s equations with the negative cosmological

constant

Rab � 1

2
Rgab � 6

L

2

gab = 0, (2.5)

1It does not have to be necessarily the case and actually in the ADM formulation of general relativity

it is the form of the lapse – the timelike warp factor (gtt) – and the shift (gta) that are fixed/imposed. For

details in the context of AdS spacetimes see [9].
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homogeneity 
+ 

conservation of  the stress tensor

@t" = 0

energy density as part of  initial conditions

The only possible static state with finite energy density 
is the isotropic and homogeneous plasma.

The final state is already known from the start.
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2 Set-up of Holographic Equilibration

The gauge-gravity duality seems to be suitable for the calculation of ther-
malization, isotropization and equilibration time of the gauge theory, as we
will explain in the following, and it has been attracted a lot of attention
within the last decade [11–15]. In order to investigate the above three phys-
ical quantities holographically, let us consider the following five-dimensional
Einstein-Hilbert action

S =
1

16⇡G5

Z
d5x

p�g

✓
R+ 12� 1

2
(@�)2 � 1

2
m2�2

◆
. (2.1)

Now the symmetries of interest for us are translation along spatial directions
at the boundary (r ! 1) and rotation in transverse plane. Therefore, the
most general ansatz consistent with the above symmetries in the generalized
Eddington-Finkelstein coordinate can be written as

ds25 = 2drdt� A(t, r)dt2 + ⌃(t, r)2
�
e�2B(t,r)dx2

L + eB(t,r)dx2
T

�
, (2.2)

and for the scalar field we have

� = �(t, r), (2.3)

where B(t, r) introduces an anisotropy between xL and xT directions. The
radial coordinate is denoted by r. t denotes the time coordinate on the
gravity side and it is the same with the boundary time when r ! 1.

In the gauge theory, we would like to study the above three time-scales
for a strongly coupled (3+1)-dimensional thermal gauge theory without in-
troducing any deformation in the Lagrangian of the gauge theory. Therefore,
according to the gauge-gravity duality, this theory can be described by a mas-
sive scalar filed on an asymptotically AdS5-black brane background provided
that non-normalizable mode of the scalar filed and anisotropic function B on
the boundary are considered to be zero. Then, varying the metric and the
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exact relations are

E = hT00i,
�P(t) =

3

2

✓E
3
� PL(t)

◆
= 3

✓
PT (t)� E

3

◆
,

(2.7)

and using the holographic dictionary [16, 17]

�P(t) = 3b4(t), E = �3a4
4

,

�2�2(t) = 16⇡G5hOi,
(2.8)

where E , PL(T ) denote energy density and longitudinal (transverse) pressure.
Note that the non-normalizable modes for B and � are supposed to be zero or
equivalently there are no source terms on the boundary. On the gauge theory
side, this means that the boundary metric is flat and energy is not pumped
into the system. Due to the homogeneity assumption of the metric and
conservation of the energy-momentum tensor, the energy density is constant
in time and hence it is a part of our initial conditions3. Since source terms
corresponding to B and the scalar field are zero, di↵erent initial conditions
with the same value of energy density E must relax to the isotropic and
homogeneous black hole metric and it therefore becomes

ds2 = 2dtdr � r2
✓
1� (⇡T )4

r4

◆
dt2 + r2d~x2, (2.9)

where 4E = 3⇡4T 4. This implies that the final state on the gauge theory side
is a thermal vacuum.

In order to solve equations of motion (2.4) using the characteristic for-
mulation method, we need to specify the initial conditions. In this paper
we discuss two cases of interest: the initial configuration is specified by (i) a
given � as a function of radial coordinate; (ii) both � and B as functions of
r. On the gauge theory side, in both cases we initially start with an out-of-
equilibrium state which after a while will relax to its final equilibrium state

3This argument can be also approved by expanding (2.4d) at the boundary even in the
presence of the scalar field with m2 = �3 and m2 = �4. In the case of m2 = �3, time
translational invariance of energy density and of a4 is equivalent. However, for the case of
m2 = �4, despite the time invariance of the energy density, a4 is not constant. Therefore,
in this paper we consider only the case of m2 = �3. For more details, we refer the reader
to [11].
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We are interested in studying different relaxation time-scales. 

both metric and scalar field in the bulk: 

The symmetries of  the stress tensor suggests: 

Since there is no source terms, different initial conditions with 

the same value of  energy density must relax to homogeneous 

and isotropic black hole: 

The field ansatz should satisfy Einstein plus scalar equations of  

motion. 
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We would like to solve the above equations with the boundary conditions
that the solution is asymptotically AdS5 at the boundary. As a result, the
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normalizable modes, remain undetermined. They can be found by evolving
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equivalently there are no source terms on the boundary. On the gauge theory
side, this means that the boundary metric is flat and energy is not pumped
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translational invariance of energy density and of a4 is equivalent. However, for the case of
m2 = �4, despite the time invariance of the energy density, a4 is not constant. Therefore,
in this paper we consider only the case of m2 = �3. For more details, we refer the reader
to [11].
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Equations of  Motion:
Using the definition of  derivative along 
outgoing radial null geodesics: 

the equations of  motion get the nested 
form:
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evolution equations for 
the initial-value problem; 
specify the form of the 
metric and scalar field 

on the neighboring time 
slice.

constraint equations; the 
evolution equations 

guarantee that they are 
obeyed provided that:

holds on the initial 
time slice.

holds on the 
boundary.
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Initial Conditions:

The initial conditions are given for the 
metric anisotropic function, B(t,r), and 
the scalar field,          , on the initial time 
slice. 

The functions we have considered are: 

          is a convex function and must 
vanish for         . 

We should make sure where        
vanishes is hidden behind the event 
horizon on the initial time slice. 

specifying the energy density, 

⌃(t, r)

r � 0

�(t, r)
are

f1(t = 0, z) =
8

3
Ez4, (3.1a)

f2(t = 0, z) =
4

3
Ez4 sin z, (3.1b)

f3(t = 0, z, �) =
2

15
Ez4exp

�150

z2h
(z � �zh)

2

�
, (3.1c)

f4(t = 0, z) = Ez24, (3.1d)

where it is helpful to use z = r�1 instead of r. zh in (3.1c) denotes the
location of the final event horizon. This function has a peak at �zh where
its maximum value is controlled by energy density E . Finally we would like
to emphasize that the hydrodynamic modes play no role in this study since
the system under consideration enjoys spatial symmetry.

3.1 Results in Isotropic Case

Let us start with the case in which the anisotropic function B is zero. There-
fore, we have only the scalar field as the function we may modify to introduce
out-of-equilibrium initial condition for the non-equilibrium behavior. In fig-
ure 1 the time evolution of the scalar field response, event horizon radius and
entropy density production have been plotted. As it is expected the entropy
density evolves from its initial value as an increasing function in time until it
reaches a constant value. This implies that the horizon area does not increase
anymore and the entropy production rate becomes zero. The time at which
the entropy gets its final value, which we have called it thermalization time,
is small compared to the equilibration time, as can be seen from the figure.
In the bulk the black hole is formed at thermalization time and event horizon
gets its final value as in a static, isotropic black hole. Therefore, according
to holography, the gauge theory is at temperature T , though the response
term of the scalar field, which is dual to the expectation value of the local
operator in the field theory, equilibrates later.

Table 1 approves that the scalar field equilibrates later than the event
horizon gets its final value, i.e. teq > tth. It seems reasonable as the entropy
production in the field theory should become zero before the rest of local
operators can equilibrate. In other words the scalar field does not back-react
on the metric at leading order in perturbative expansion in the scalar field
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2. right form of the near boundary expansion: 

3. bulk regularity 
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We would like to solve the above equations with the boundary conditions
that the solution is asymptotically AdS5 at the boundary. As a result, the
metric functions and scalar field behave near boundary as 2 [10, 12]
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for m2 = �3. Notice that the radius of AdS5 is set to be one. In the asymp-
totic expansion, (time-dependent) coe�cients a4, b4(t) and �2(t), which are
normalizable modes, remain undetermined. They can be found by evolving
the metric components and scalar field forward in time from appropriate
initial configurations. These normalizable modes are proportional to the ex-
pectation values of the corresponding dual operators in gauge theory and the

2Note that the metric (2.2) is invariant under the residual di↵eomorphism r ! r+f(t).
This freedom is fixed in such way that the constant term in (2.6c) does not appear.
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3@r⌃

⌃
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for m2 = �3. Notice that the radius of AdS5 is set to be one. In the asymp-
totic expansion, (time-dependent) coe�cients a4, b4(t) and �2(t), which are
normalizable modes, remain undetermined. They can be found by evolving
the metric components and scalar field forward in time from appropriate
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given geometry and scalar field on the initial time-slice
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Solving Bulk Equations of  Motion (Numerics):
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We would like to solve the above equations with the boundary conditions
that the solution is asymptotically AdS5 at the boundary. As a result, the
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A(t, r) = r2 +
a4
r2

� 2b4(t)2

7r6
+ ..., (2.6a)

B(t, r) =
b4(t)

r4
+

@tb4(t)

r5
+ ..., (2.6b)

⌃(t, r) = r � b4(t)2

7r7
+ ..., (2.6c)

�(t, r) =
�2(t)

r3
+ ..., (2.6d)
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normalizable modes, remain undetermined. They can be found by evolving
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This freedom is fixed in such way that the constant term in (2.6c) does not appear.
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⌃̇@r⌃+ 3Ḃ@rB + 4 + �̇@r�� 1

6
m2�2, (2.4c)

0 = ⌃̈� 1

2
@rA⌃̇+

1

6
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3@r⌃

⌃
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@t� & @tB

Pseudo-Spectral 
Method

Proceed to the next time step using a finite difference scheme.

B(t = �t, r) & �(t = �t, r)
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What are we going to get?

16

Thermalization 
Criterion: 

Isotropization 
Criterion: 

Equilibration 
Criterion:

The event horizon radius is:

with the null normal vector:

up. The event horizon is defined as

r � rEH(t) = 0, (2.10)

with the normal vector being null

r0EH(t)�
1

2
A(t, rEH(t)) = 0. (2.11)

Time-dependent solutions of the equations of motion (2.4) relax to (2.9)
asymptotically (t ! 1), and therefore the event horizon will approach
⇡T . We now define a time-dependent parameter

✏(t) =

����
rEH(t)� ⇡T
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where the thermalization time is defined as the time which satisfies
✏(tth) < 5 ⇥ 10�4 and remains below this limit afterwards. Although
we are dealing with a non-equilibrium situation, it is convenient to
introduce an entropy density as the area of the event horizon. In fact
this provides a rough scale of how much entropy is produced during the
evolution of the system. As a result, we have
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3 . (2.13)

• Isotropization Criteria
When the anisotropic function B is turned on, the state in the gauge
theory we start with at t = 0 is anisotropic and out-of-equilibrium. The
question now is how much time this state needs to relax to an isotropic
state. In order to find the mentioned time, we define a time-dependent
parameter as

�(t) =
�P(t)
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and isotropization time is then determined by �(tiso) < 5⇥ 10�4. After
this time one can conclude that one of the non-equilibrium sources,
B, does not significantly contribute to the time evolution of the system
anymore. Note that for t > tiso the state may still be out-of-equilibrium
due to the scalar field e↵ect but it is isotropic.
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• Equilibration Criteria
The equilibration time is related to out-of-equilibrium dynamics sourced
by the scalar field. In other words, in the absence (or presence) of
the anisotropy, a time-dependent metric can be found by including
the backreaction of the scalar field on the background geometry. In
dual gauge theory, it means that we are dealing with an isotropic (or
anisotropic) non-equilibrium state. Similar to previous cases, equili-
bration time is defined as �(teq) < 5⇥ 10�4 where

�(t) =

����E3/2�2(t)

����. (2.15)

In order to find the equilibration time, we have introduced the dimen-
sionless parameter E3/2�2(t). Since the non-normalizable mode of the
scalar filed is zero on the boundary and consequently its equilibrium
value is zero, we compare the time-dependent value of the normalizable
mode to the energy density which is a part of our initial conditions.

3 Numerical Results

As mentioned in the previous section, we mainly focus on solving the equa-
tions of motion (2.4) subject to appropriate boundary and initial conditions,
using characteristic formulation method. The boundary conditions intro-
duced in (2.6) indicate that the gauge theory on the boundary is not de-
formed during the time evolution. We may arbitrarily pick out di↵erent
functions (for � or B or both) as our initial conditions provided that they
satisfy the mentioned boundary conditions and do not lead to a singularity
during the time evolution. Indeed the singularity must be always covered by
the event horizon. In the gauge theory, the selected initial functions and their
dynamics given by (2.4) correspond to non-equilibrium states and their time
evolution. The initial functions we will consider in the following subsections
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Figure 1: The plot on the left (right) shows the time evolution of the non-
normalizable mode of the scalar filed (entropy density). The middle panel
shows the time evolution of the event horizon. The functions we have con-
sidered here are (3.1a) (top) and (3.1b) (down).

amplitude [11], therefore one can expect the e↵ect of the metric on entropy
production to be more than the scalar e↵ect. In fact it seems that for t > tth
the scalar field acts as a probe to the AdS-black hole background.

In the middle panel of figure 1, the evolution of the event horizon radius
has been plotted. Regarding this figure one may define a decreasing time-
dependent temperature associated with the location of the event horizon. As
a result, we observe that the initial metric configuration has higher tempera-
ture than the final state which is consistent with the results reported in [13].
It is important to note that the thermalization time is defined exactly equal
to the time at which the entropy production cease.

Table 1: Time-scales of relaxation for �i = f3(0, z, ��)

�� teq tth

1/6 0.633236 0
1/2 1.05992 0.079232
5/6 1.57635 0.592548
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f4(t = 0, z) = Ez24, (3.1d)

where it is helpful to use z = r�1 instead of r. zh in (3.1c) denotes the
location of the final event horizon. This function has a peak at �zh where
its maximum value is controlled by energy density E . Finally we would like
to emphasize that the hydrodynamic modes play no role in this study since
the system under consideration enjoys spatial symmetry.

3.1 Results in Isotropic Case

Let us start with the case in which the anisotropic function B is zero. There-
fore, we have only the scalar field as the function we may modify to introduce
out-of-equilibrium initial condition for the non-equilibrium behavior. In fig-
ure 1 the time evolution of the scalar field response, event horizon radius and
entropy density production have been plotted. As it is expected the entropy
density evolves from its initial value as an increasing function in time until it
reaches a constant value. This implies that the horizon area does not increase
anymore and the entropy production rate becomes zero. The time at which
the entropy gets its final value, which we have called it thermalization time,
is small compared to the equilibration time, as can be seen from the figure.
In the bulk the black hole is formed at thermalization time and event horizon
gets its final value as in a static, isotropic black hole. Therefore, according
to holography, the gauge theory is at temperature T , though the response
term of the scalar field, which is dual to the expectation value of the local
operator in the field theory, equilibrates later.

Table 1 approves that the scalar field equilibrates later than the event
horizon gets its final value, i.e. teq > tth. It seems reasonable as the entropy
production in the field theory should become zero before the rest of local
operators can equilibrate. In other words the scalar field does not back-react
on the metric at leading order in perturbative expansion in the scalar field
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Figure 2: This figure shows the time evolution of the non-normalizable mode
of the scalar filed, pressure anisotropy, event horizon and entropy density.
Initial functions for both � and B are considered as (3.1a).

A typical behavior of various quantities has been plotted in figures 2 and
3. The way in which these quantities change with time is similar to figure 1
and the results which have been discussed in [12]. For instance, based on the
dynamical evolution of the event horizon, one can define a time-dependent
temperature and then figure 2 shows that the final equilibrated temperature
is smaller than the initial one.

One of the main results in [12] where the scalar field has not been included,
is that the thermalization time is always smaller than the isotropization time,
tth < tiso. However, it is not necessarily true in the presence of the scalar field,
as it can be easily seen from case 1 of our time ordering. Moreover, when
the anisotropy function is not considered, we showed that the thermalization
time is always smaller than the equilibration time, i.e. tth < teq, see table 1.
However, by taking into account the anisotropy function, case 2 of our time
ordering shows that tth > teq. Therefore, in the presence of both scalar field
and anisotropy function, the thermalization time can be larger than teq or
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Table 2: Time-scales of relaxation for �i = f3(0, z, ��) and Bi = f3(0, z, 0.5)

�� teq tth tiso

1/6 0.43656 0.255016 1.42388
1/3 0.92813 0.255528 1.42386
1/2 1.1525 0.286825 1.4238
5/6 1.64636 0.632499 1.42316

Table 3: Time-scales of relaxation for �i = f3(0, z, 0.5) and Bi = f3(0, z, �B)

�B teq tth tiso

1/6 1.15317 0.0602394 1.01136
1/3 1.15303 0.147214 1.2986
1/2 1.1525 0.286825 1.4238
5/6 1.14811 0.606601 1.52925

the scalar field (anisotropy function). It is clearly seen that tiso in table 2
and teq in table 3 are almost constant regardless of the position of the peak
in the initial configurations for scalar field and anisotropy function, respec-
tively. More precisely, initial configurations generate their own time-scales
without clearly perturbing each other. It is surprising result since it seems
that the non-linear equations of motion (2.4) apparently behave like a set of
linear di↵erential equations. However, notice that the thermalization time is
sensitive to both �� and �B representing non-linearity of equations of motion
(2.4). Moreover, these tables show that when �� < �B, indicating that the
peak of the initial configuration of the scalar field is closer to the bound-
ary than the corresponding one in the anisotropy function, the equilibration
time is smaller than isotropization time and vice versa. This states that the
initial configurations which are localized closer to the final horizon take the
longer time to relax consistent with the result reported in [12]. In the case
of �� = �B, the equilibration and isotropization time are almost the same.
Moreover, table 2 reveals that the thermalization time is less sensitive to ��

until �� < �B. However, as it is clearly seen from table 3, �B a↵ects more
considerably the thermalization time even in the case of �B < ��.
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Table 4: Time-scales of relaxation for �i = f3(0, z, ��) and Bi = f3(0, z, 1/6)

�B teq tth tiso

1/6 0.436572 0 1.01144
1/2 1.15317 0.06024 1.01136
2/3 1.27577 0.402617 1.01146
5/6 1.57775 0.591871 1.01105

In table 4, the peak is located at 1/6 instead of 0.5 in the table 2 and
similar results are produced. Interestingly, when �� = �B = 1/6, since
the peak of both initial functions is near to the boundary, the thermaliza-
tion time is zero with a good accuracy and it means that the event horizon
forms instantly. The state is still out-of-equilibrium, however, because of
the anisotropic pressure. Moreover, in the case of �� = �B thermalization
and equilibration time are not even approximately equal anymore unlike the
results in tables 2 and 3. It is then clearly seen from these tables that the
isotropization time is always bigger than equilibration and thermalization
time when �� = �B. In the end, one can conclude that the anisotropic pres-
sure plays a more significant role than the expectation value of the scalar
operator to deviate the system from its equilibrium in this case.

Table 5: Time-scales of relaxation for �i = f3(0, z, ��) and Bi = f4(0, z)

�� teq tth tiso

1/6 0.435816 0.791326 1.70082
1/2 1.13573 0.791695 1.70092
5/6 1.56707 0.799356 1.70206

In table 5, as another example, the initial configurations are chosen to be
�i = f3(0, z, ��) and Bi = f4(0, z). As before, the value of the isotropization
time is independent of ��. However, the equilibration time increases by
raising �� which is reasonable. In this special case the thermalization time
is almost independent of �� which is not a usual behavior, for instance see
table 1.
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where it is helpful to use z = r�1 instead of r. zh in (3.1c) denotes the
location of the final event horizon. This function has a peak at �zh where
its maximum value is controlled by energy density E . Finally we would like
to emphasize that the hydrodynamic modes play no role in this study since
the system under consideration enjoys spatial symmetry.

3.1 Results in Isotropic Case

Let us start with the case in which the anisotropic function B is zero. There-
fore, we have only the scalar field as the function we may modify to introduce
out-of-equilibrium initial condition for the non-equilibrium behavior. In fig-
ure 1 the time evolution of the scalar field response, event horizon radius and
entropy density production have been plotted. As it is expected the entropy
density evolves from its initial value as an increasing function in time until it
reaches a constant value. This implies that the horizon area does not increase
anymore and the entropy production rate becomes zero. The time at which
the entropy gets its final value, which we have called it thermalization time,
is small compared to the equilibration time, as can be seen from the figure.
In the bulk the black hole is formed at thermalization time and event horizon
gets its final value as in a static, isotropic black hole. Therefore, according
to holography, the gauge theory is at temperature T , though the response
term of the scalar field, which is dual to the expectation value of the local
operator in the field theory, equilibrates later.

Table 1 approves that the scalar field equilibrates later than the event
horizon gets its final value, i.e. teq > tth. It seems reasonable as the entropy
production in the field theory should become zero before the rest of local
operators can equilibrate. In other words the scalar field does not back-react
on the metric at leading order in perturbative expansion in the scalar field
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1. tiso < tth < teq,

2. teq < tth < tiso,

3. tth < teq < tiso,

4. tth < tiso < teq.

According to the above results, the thermalization time can not be the longest
time-scale of relaxation. In other words, the thermalization time must be
smaller than either isotropization or equilibration time or both. This seems
reasonable. Since the anisotropy function and the scalar field back-react on
the background (and consequently they a↵ect the evolution of the event hori-
zon), it is impossible that both isotropization and equilibration occur before
thermalization. In the first group the system becomes isotropic and then
thermalizes, meaning that the event horizon location is fixed. Therefore one
can conclude that the background relaxes to a static black hole background
and scalar field can be treated as a probe to this background. On the gauge
theory side, this means that the filed theory is in equilibrium, for t > tth, and
is probed by a scalar operator with dimension two. In the second and third
groups, the thermalization and equilibration take place before isotropization.
Since the system is not isotropic yet, one can conclude that the field theory
will be in equilibrium for t > tiso. In the last group, similar to the first case,
for t > tiso the field theory is in equilibrium and the scalar operator is added
to the field theory in the probe limit.

Table 2: Time-scales of relaxation for �i = f3(0, z, ��) and Bi = f3(0, z, 0.5)
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1/2 1.1525 0.286825 1.4238
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As it was stated, for a fixed value of zh, � in (3.1c) specifies the location
of the function’s peak. In tables 2 and 3, we have chosen the same initial con-
figuration (3.1c) for both scalar field and anisotropy function with di↵erent
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Figure 2: This figure shows the time evolution of the non-normalizable mode
of the scalar filed, pressure anisotropy, event horizon and entropy density.
Initial functions for both � and B are considered as (3.1a).

A typical behavior of various quantities has been plotted in figures 2 and
3. The way in which these quantities change with time is similar to figure 1
and the results which have been discussed in [12]. For instance, based on the
dynamical evolution of the event horizon, one can define a time-dependent
temperature and then figure 2 shows that the final equilibrated temperature
is smaller than the initial one.

One of the main results in [12] where the scalar field has not been included,
is that the thermalization time is always smaller than the isotropization time,
tth < tiso. However, it is not necessarily true in the presence of the scalar field,
as it can be easily seen from case 1 of our time ordering. Moreover, when
the anisotropy function is not considered, we showed that the thermalization
time is always smaller than the equilibration time, i.e. tth < teq, see table 1.
However, by taking into account the anisotropy function, case 2 of our time
ordering shows that tth > teq. Therefore, in the presence of both scalar field
and anisotropy function, the thermalization time can be larger than teq or
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Table 5: Time-scales of relaxation for �i = f3(0, z, ��) and Bi = f4(0, z)
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functions can have the following form

f�(t = 0, z, ��) =
c�
15

Ez4exp
�150

z2h
(z � ��zh)

2

�
, (3.2)

fB(t = 0, z, �B) =
cB
15

Ez4exp
�150

z2h
(z � �Bzh)

2

�
, (3.3)

where ��, �B and cB are set as 5.6/6, 0.001/6 and 1/15, respectively. The
results are given in table 6.

Table 6: Time-scales of relaxation for f� and fB

c� teq tth tiso

10/15 1.90965 0.866807 0.744497
8/15 1.89562 0.844064 0.746243
4/15 1.84284 0.781432 0.748315

One of the main results in [12] where the scalar field has not been included,
is that the thermalization time is always smaller than the isotropization time,
tth < tiso. However, it is not necessarily true in the presence of the scalar field,
as it can be easily seen from case 1 of our time ordering. Moreover, when
the anisotropy function is not considered, we showed that the thermalization
time is always smaller than the equilibration time, i.e. tth < teq, see table 1.
However, by taking into account the anisotropy function, case 2 of our time
ordering shows that tth > teq. Therefore, in the presence of both scalar field
and anisotropy function, the thermalization time can be larger than teq or
tiso depending on the initial conditions.
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Gauge/Gravity duality provides a useful framework to study 
out-of-equilibrium strongly coupled systems. 

QGP formation and relaxation 

Local time-dependent processes 

Non-conformal theories 

Revivals and relaxation in finite size systems

Comments:

Thank you
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