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Quasi local charges: the story

Two main lines of formulating quasi-local conserved charges:

1 Space+time → Hamiltonian formulation:

Komar (1958),
Arnowitt-Deser-Misner (ADM) (1959-62),
Bondi-van der Burg-Metzner (1962), Sachs (1962),
Regge-Teitelboim (1974),
Brown-York, (1993), Balasubramanian-Kraus (1999),
Abbott-Deser (1982),
Deser-Tekin (2003),
Kim-Kulkarni-Yi (2013).

2 Spacetime → Lagrangian formulation:

Crnkovic-Witten, (1987),
Ashtekar-Bombelli-Koul, (1987),
Lee-Iyer-Wald-Zoupas, (1990,93,99),
Barnich-Brandt (2002),

� In this talk, we will focus on the Lagrangian formulation.
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Motivations

Conserved charges, which will be introduced,:

are calculable:

in any covariant gravitational theory,
in any dimensions,
in any asymptotics,

are covariant,

are unambiguous,

are independent of the chosen codimension-2 surface of integration,

are regular automatically,

put entropy and electric charge in a single formulation with mass and
angular momenta,

relax the calculation of entropy over the horizon,

make the first law equivalent to an identity between generators.
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Flowchart of calculation

Theory L

Solution Φ̂

Exact symmetry η

Θ ω k

δ̂Φ

kη(δ̂Φ, Φ̂)

δ̂Hη =
∮
S
kη

integrable?

Hη(Φ̂)

yes
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A review on covariant phase space method

Theory L

Solution Φ̂

Exact symmetry η

Θ ω k

δ̂Φ
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Phase space & symplectic structure

Phase space is a manifold M
equipped with Ω = ΩAB δX

A

δX
B

such that:

1 ΩAB = −ΩBA

2 Ω be closed:

δΩ = 0

3 Ω be non-degenerate:

ΩABv
B

= 0 ⇔ v
B

= 0

I Ω is invertible:

Ω
AB

= (Ω−1)AB

M

Ω
X
A

Phase Space

Manifold M with symplectic 2-form Ω
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Simplest example: one dimensional motion

Particle in one dimension

X1 = q , X2 = p

Ω
AB

=

(
0 −1
1 0

)
{q, p} = 1,
{q, q} = {p, p} = 0

p

q

Ω

How to read Ω from Lagrangian

L = L(q, q̇) ⇒ δL =
(
∂L
∂q − ∂t(

∂L
∂q̇ )
)
δq + d

dt (p δq)
d
dt (p δq) → p δq → Ω = δ(p δq) = δp ∧ δq .

Conserved charge
I charge variation for a vector field v ⇒ δHv ≡ v · Ω
• Example: v = ∂q ⇒ δHv = ∂q · Ω = δp ⇒ Hv = p
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Canonical phase space method for field theories

Canonical fields

Φ(~x) , Π(~x) ≡ ∂L
∂Φ̇

Poisson brackets

{Φ(~x1),Π(~x2)} = δ(~x1−~x2)

{Φ(~x1),Φ(~x2)} = 0

{Π(~x1),Π(~x2)} = 0 .

Π(~x)

Φ(~x)

General covariance?

� In canonical method, it is necessary to introduce time foliations, which
usually breaks the general covariance.
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Covariant phase space formulation

Covariant manifold M
Given a covariant action
S =

∫
L[Φ] in d-dim spacetime:

I manifold M is composed of
dynamical field Φ(xµ)

• Φ(xµ): metric gαβ(xµ), gauge

field Aν(xµ), scalar fields φ(xµ)...

Ω
LW

Φ(xµ)

M

covariant phase space

Symplectic 2-form Ω

(1) picking the ΘLW from δL[Φ] = E(Φ)δΦ + dΘLW(δΦ,Φ)

(2) exterior derivation on the phase space:

ωLW(δ1Φ, δ2Φ,Φ) ≡ δ1ΘLW(δ2Φ,Φ)− δ2ΘLW(δ1Φ,Φ)

(3) the Lee-Wald symplectic form Ω would be: Ω
LW
≡
∫

Σ
ω

LW
,
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Covariant phase space formulation

Ambiguity

Ambiguity in the definition of Θ through δL[Φ] = E(Φ)δΦ + dΘ(δΦ,Φ):

Θ(δΦ,Φ)→ Θ(δΦ,Φ) + dY(δΦ,Φ)

I It results in an ambiguity in the symplectic structure:

ω(δ1Φ, δ2Φ,Φ)→ ω(δ1Φ, δ2Φ,Φ) + d
(
δ2Y(δ1Φ,Φ)− δ1Y(δ2Φ,Φ)

)
Conditions for independence of Ω from Σ

dω(δ1Φ, δ2Φ,Φ) = 0 and ω(δ1Φ, δ2Φ,Φ)
∣∣∣
∂Σ

= 0 ,

� the former is satisfied if Φ and δΦ satisfy e.o.m and linearized e.o.m
respectively ⇒ we will assume on-shell-ness here after.

� for the latter, one usually needs to impose some fall-off conditions on δΦ.
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Conserved charges

Let us put diff and gauge transformations in a single set ε ≡ {ξ, λ}:

δεΦ = LξΦ + δλA

Charge variation associated with ε

� Any generator ε ≡ {ξ, λ} (with arbitrary δε) induces a vector field v = δεΦ on
the TM.

� The charge variation for the ε is defined as

δHε ≡ v · Ω =

∫
Σ

(
δ[Φ]Θ(δεΦ,Φ)− δεΘ(δΦ,Φ)

)
Fundamental theorem of the covariant phase space formalism

δ[Φ]Θ(δεΦ,Φ)− δεΘ(δΦ,Φ) = dkε(δΦ,Φ)

Stokes theorem ⇒ δHε =

∮
∂Σ

kε(δΦ,Φ)
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Charge conservation and integrability

Conservation conditions

For all Φ ∈M and δΦ ∈ TM:

dω(δΦ, δεΦ,Φ) = 0 , ω(δΦ, δεΦ,Φ)
∣∣∣
∂Σ

= 0 .

I Not any generator ε has conserved charge.

Integrability condition

For all δ1Φ, δ2Φ ∈ TM:

(δ1δ2 − δ2δ1)Hε = 0 , ⇒
∮
∂Σ

(
ξ · ω(δ1Φ, δ2Φ,Φ) + kδ1ε(δ2Φ,Φ)− kδ2ε(δ1Φ,Φ)

)
= 0.

I Not any generator ε has integrable charge.

Lee and Wald (1990), Wald and Zoupas (2000), G. Compère et al. (2016).
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Solution phase space

Theory L

Solution Φ̂

Exact symmetry η

Θ ω kε

δ̂Φ

kη(δ̂Φ, Φ̂)

δ̂Hη =
∮
S
kη

integrable?

Hη(Φ̂)

yes

14 / 32



Standard fall-off conditions

r

Φ

M =?

Ω
LW

� In the standard covariant phase space formulation, M is introduced by
some fall-off conditions.

� The fall-off conditions, although restrict the manifold, but do not
identify it completely.

Nebula Star Black hole15 / 32



Solution phase space

Focussing on a set of (black
Hole) solutions identified by

some parameters Φ̂(xµ; pj)

M̂ , Ω̂LW

Φ̂(xµ; p′j)

Φ̂(xµ; pj)

solution phase space

I Manifold M −→ “solution phase space manifold” M̂ built of Φ̂(xµ; pi)

I Ω −→ ΩLW confined to M̂

I TM −→ TM̂ is spanned by “parametric variations”: δ̂Φ ≡ ∂Φ̂
∂pj

δpj
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An example for solution phase space

Kerr solution phase space

Theory: Einstein-Hilbert L = 1
16πG

R

Dynamical field Φ̂: the metric gµν

The kξ: It is dual to

kµνξ =
1

16πG

[
ξν∇µh− ξν∇τhµτ + ξτ∇νhµτ +

1

2
h∇νξµ − hτν∇τ ξµ

]
− [µ↔ ν]

in which hµν ≡ gµσgντδgστ and h ≡ hµµ.

Manifold M̂:

ds2 = −(1−f)dt2 +
ρ2

∆r
dr2 + ρ2dθ2 − 2fa sin2 θ dtdϕ+

(
r2 + a2 + fa2 sin2 θ

)
sin2 θ dϕ2 ,

ρ2 ≡ r2 + a2 cos2 θ , ∆r ≡ r2 + a2 − 2Gmr , f ≡
2Gmr

ρ2
,

Parameters: pj = {m,a}
Parametric variations δ̂Φ:

δ̂gµν =
∂ĝµν
∂m

δm+
∂ĝµν
∂a

δa
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Conserved charges associated with exact symmetries

Theory L

Solution Φ̂

Exact symmetry η

Θ ω kε

δ̂Φ

kη(δ̂Φ, Φ̂)

δ̂Hη =
∮
S
kη

integrable?

Hη(Φ̂)

yes
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Symplectic symmetry generators

Symplectic symmetry generator

Definition: A generator ε = {ξ, λ} is called symplectic symmetry generator if

ω(δΦ, δεΦ,Φ) = 0

on-shell for all Φ and δΦ in M and TM.

Two nice features
I Conservation: symplectic symmetry generator −→ conservation is

guaranteed:

dω(δΦ, δεΦ,Φ) = 0 , ω(δΦ, δεΦ,Φ)
∣∣∣
∂Σ

= 0 X
I Independence of ∂Σ: symplectic symmetry generator −→ the δHε is

independent of chosen codimension-2 surface of integration:∮
S2

kε(δΦ,Φ)−
∮
S1

kε(δΦ,Φ) =

∫
Σ

ω(δΦ, δξΦ,Φ) = 0
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Exact symmetry generators

Non-exact and exact symplectic symmetry generators

Symplectic symmetry generators are composed of two sets:

1 non-exact symmetries: χ = {ξ, λ} is called non-exact symmetry if

∃Φ ∈M : δχΦ 6= 0

2 exact symmetries: η = {ζ, λ} is called exact symmetry if

∀Φ ∈M : δηΦ = 0

I Exact symplectic symmetries are in our main focus in the “solution phase
space method”.

No ambiguity

I Exact symmetries −→ charges are unambiguous:

ω(δΦ, δηΦ,Φ)→ ω(δΦ, δηΦ,Φ) + d

���
���

���
���:

linear in δηΦ = 0(
δηY(δΦ,Φ)− δY(δηΦ,Φ)

)
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Putting pieces together

21 / 32



Putting pieces together

covariant phase space
formulation solution phase space exact symmetries

kε(δΦ,Φ) Φ̂(xµ, pj) , δ̂Φ η = {ζ, λ}+ +

Conserved charge associated with η

Conserved charge associated with the exact symmetry η = {ζ, λ}:

δ̂Hη =

∮
S

kη(δ̂Φ, Φ̂) .

Integrability condition:∮
S

(
ζ · ω̂(δ̂1Φ, δ̂2Φ, Φ̂) + kδ̂1η(δ̂2Φ,Φ)− kδ̂2η(δ̂1Φ, Φ̂)

)
= 0, ∀δ̂1,2Φ and ∀Φ̂.

If integrable, then Hη[Φ̂] =
∫ p
p̄
δ̂Hη +Hη[Φ̄]

22 / 32



Overall view

Theory L

Solution

phase space Φ̂

Exact symmetry η

Θ ω kε

δ̂Φ

kη(δ̂Φ, Φ̂)

δ̂Hη =
∮
S
kη

integrable?

Hη(Φ̂)

yes

23 / 32



Thermodynamics

Thermodynamical conserved charges

Mass:
ηM = {∂t, 0} −→ δ̂M ≡ δ̂Hη

Angular momentum:

ηJ = {∂ϕ, 0} −→ δ̂J ≡ −δ̂Hη

Electric charge:
ηQ = {0, 1} −→ δ̂Q ≡ δ̂Hη

Entropies:

ηS
H

=
2π

κH

{ζH ,−ΦH} −→ δ̂SH ≡ δ̂Hη

First law(s)

η
S
H

= µ
M
η
M

+µ
J
η
J

+µ
Q
η
Q

linearity of δHε in ε−−−−−−−−−−−−−→ δS
H

= µ
M
δM−µ

J
δJ+µ

Q
δQ
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Application: Kerr-Newman-(A)dS charges and first law(s)
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Application: Kerr-Newman-(A)dS black holes

Theory: L = 1
16πG

(R− F 2 − 2Λ)

kε(δΦ,Φ) : For the theory under consideration, and for
diffeomorphism+gauge transformation ε = {ξ, λ}

kε(δΦ,Φ) =

√
−g

2! 2!
εµνσρ (kEHµν

ε + kMµν
ε ) dxσ ∧ dxρ

in which

k
EHµν
ξ =

1

16πG

([
ξ
ν∇µh− ξν∇τhµτ + ξτ∇νhµτ +

1

2
h∇νξµ − hτν∇τξµ

]
− [µ↔ ν]

)
,

k
Mµν
ε =

1

8πG

([(−h
2
F
µν

+ 2F
µρ
h
ν
ρ − δF

µν)
(ξ
σ
Aσ + λ)− FµνξρδAρ − 2F

ρµ
ξ
ν
δAρ

]
− [µ↔ ν]

)
where hµν ≡ gµσgντδgστ and h ≡ hµµ.
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Application: Kerr-Newman-(A)dS black holes

Solution phase space M̂:

ds2 = −∆θ(
1− Λr2

3

Ξ
−∆θf)dt2 +

ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 − 2∆θfa sin2 θ dtdϕ

+

(
r2 + a2

Ξ
+ fa2 sin2 θ

)
sin2 θ dϕ2 ,

ρ2 ≡ r2 + a2 cos2 θ , ∆r ≡ (r2 + a2)(1− Λr2

3
)− 2Gmr + q2 ,

∆θ ≡ 1 +
Λa2

3
cos2 θ , Ξ ≡ 1 +

Λa2

3
, f ≡ 2Gmr

ρ2Ξ2
,

Âµdxµ =
qr

ρ2Ξ
(∆θdt− a sin2 θ dϕ) .

Parameters: pj = {m,a, q}
Parametric variations:

δ̂gµν =
∂ĝµν
∂m

δm+
∂ĝµν
∂a

δa+
∂ĝµν
∂q

δq , δ̂Aµ =
∂Âµ
∂m

δm+
∂Âµ
∂a

δa+
∂Âµ
∂q

δq
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Application: Kerr-Newman-(A)dS black holes

I Mass: ηM = {∂t, 0}

δ̂M =
∂
(
m
Ξ2

)
∂m

δm+
∂
(
m
Ξ2

)
∂a

δa+
∂
(
m
Ξ2

)
∂q

δq = δ(
m

Ξ2
) ⇒ M =

m

Ξ2
,

I Angular momentum: ηJ = {∂ϕ, 0}

δ̂J =
∂
(
ma
Ξ2

)
∂m

δm+
∂
(
ma
Ξ2

)
∂a

δa+
∂
(
ma
Ξ2

)
∂q

δq = δ(
ma

Ξ2
) ⇒ J =

ma

Ξ2
.

I Electric charge: ηQ = {0, 1}

δ̂Q =
∂
(
q
Ξ

)
∂m

δm+
∂
(
q
Ξ

)
∂a

δa+
∂
(
q
Ξ

)
∂q

δq = δ(
q

Ξ
) ⇒ Q =

q

Ξ
.

� Reference points: M = 0, J = 0 and Q = 0 in pure (A)dS spacetime.
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Application: Kerr-Newman-(A)dS black holes

� Surface gravity, angular velocity and electric potential for any horizon:

κH =
rH(1− Λa2

3
− Λr2

H
− a2+q2

r2
H

)

2(r2
H

+ a2)
, ΩH =

a(1−
r2
H
l2

)

r2
H

+ a2
, ΦH =

qrH
r2
H

+ a2
.

I Entropies: ηH = 2π
κ
H
{ζH ,−ΦH} in which ζH = ∂t + ΩH∂ϕ

δ̂SH =

∂

(
π(r2

H
+a2)

GΞ

)
∂m

δm+

∂

(
π(r2

H
+a2)

GΞ

)
∂a

δa+

∂

(
π(r2

H
+a2)

GΞ

)
∂q

δq = δ
(π(r2

H
+ a2)

GΞ

)
,

⇒ SH =
π(r2

H
+ a2)

GΞ
.

� Reference points:

Event horizons: SH = 0 on pure (A)dS.

Cosmological horizons: SH = πl2

G
on pure dS.
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Application: Kerr-Newman-(A)dS black holes

First law(s)

ηH =
2π

κH

{∂t, 0}+
2πΩH

κH

{∂ϕ, 0} −
2πΦH

κH

{0, 1} ,

I First law(s): linearity of δHη in η, for each one of the horizons, results to

δSH =
2π

κH

δM − 2π

κH

ΩHδJ −
2π

κH

ΦHδQ

which by Hawking temperature(s) TH =
κ
H

2π
yields the first law(s)

δM = THδSH + ΩHδJ + ΦHδQ .

I Notice that thermodynamics of Kerr-AdS, Kerr and Kerr-dS has been unified.
K. Hajian, “Conserved Charges and First Law of Thermodynamics for Kerr-de Sitter

Black Holes,” arXiv:1602.05575 [gr-qc].
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Conclusion

covariant phase space
formulation solution phase space exact symmetries

kε(δΦ,Φ) Φ̂(xµ, pj) , δ̂Φ η = {ζ, λ}+ +

Conserved charges in solution phase space method:

are calculable:

in any covariant gravitational theory,
in any dimensions,
in any asymptotics,

are covariant,

are unambiguous,

are independent of the chosen codimension-2 surface of integration,

are regular automatically,

put entropy and electric charge in a single formulation with mass and
angular momenta,

make the first law equivalent to an identity between generators.
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Thanks for your attention


