Solution phase space and conserved charges

K. Hajian and M.M. Sheikh-Jabbari, Phys.Rev. D93 (2016) 4, 044074, [arXiv:1512.05584].

Kamal Hajian

Institute for Research in Fundamental Sciences (IPM)

Recent Trends in String Theory and Related Topics $May \ 24^{th}, \ 2016$

Two main lines of formulating quasi-local conserved charges:

• Space+time \rightarrow Hamiltonian formulation:

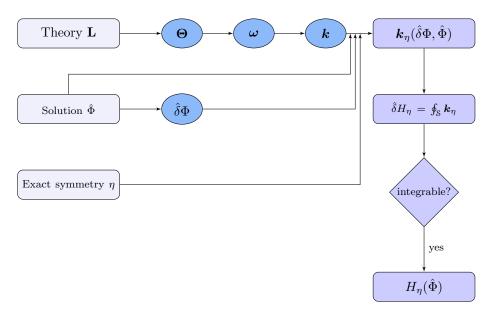
- Komar (1958),
- Arnowitt-Deser-Misner (ADM) (1959-62),
- Bondi-van der Burg-Metzner (1962), Sachs (1962),
- Regge-Teitelboim (1974),
- Brown-York, (1993), Balasubramanian-Kraus (1999),
- Abbott-Deser (1982),
- Deser-Tekin (2003),
- Kim-Kulkarni-Yi (2013).
- **2** Spacetime \rightarrow Lagrangian formulation:
 - Crnkovic-Witten, (1987),
 - Ashtekar-Bombelli-Koul, (1987),
 - Lee-Iyer-Wald-Zoupas, (1990,93,99),
 - Barnich-Brandt (2002),
- In this talk, we will focus on the Lagrangian formulation.

Motivations

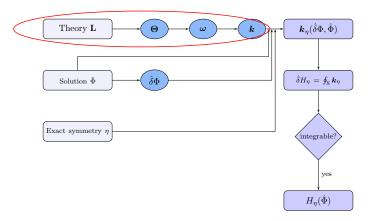
Conserved charges, which will be introduced,:

- are calculable:
 - in any covariant gravitational theory,
 - in any dimensions,
 - in any asymptotics,
- are covariant,
- are unambiguous,
- are independent of the chosen codimension-2 surface of integration,
- are regular automatically,
- put entropy and electric charge in a single formulation with mass and angular momenta,
- relax the calculation of entropy over the horizon,
- make the first law equivalent to an identity between generators.

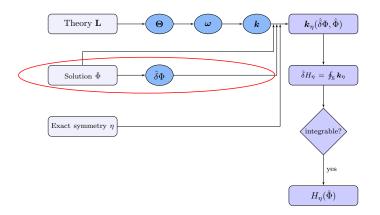
Flowchart of calculation



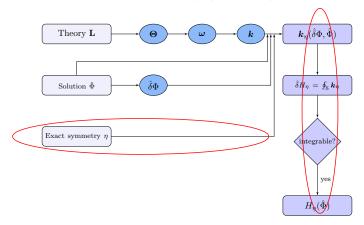
- A review on covariant phase space formulation
- Solution phase space
- Conserved charges associated with exact symmetries
- Application: Kerr-Newman-(A)dS charges and first law(s)



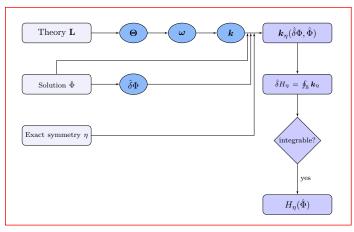
- A review on covariant phase space formulation
- Solution phase space
- Conserved charges associated with exact symmetries
- Application: Kerr-Newman-(A)dS charges and first law(s)



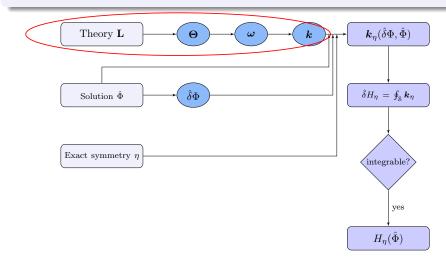
- A review on covariant phase space formulation
- Solution phase space
- Conserved charges associated with exact symmetries
- Application: Kerr-Newman-(A)dS charges and first law(s)



- A review on covariant phase space formulation
- Solution phase space
- Conserved charges associated with exact symmetries
- Application: Kerr-Newman-(A)dS charges and first law(s)



A review on covariant phase space method



Phase space is a manifold \mathcal{M} equipped with $\Omega = \Omega_{AB} \delta X^A \delta X^B$ such that:

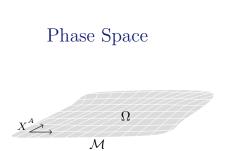
- $\ \, \Omega_{AB} = -\Omega_{BA}$
- **2** Ω be closed:

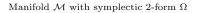
 $\delta \Omega = 0$

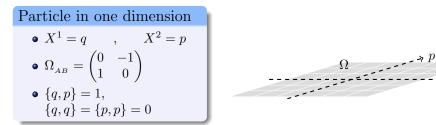
(a) Ω be non-degenerate:

 $\Omega_{{}_{AB}}v^{{}_B}=0 \ \Leftrightarrow \ v^{{}_B}=0$

• Ω is invertible: $\Omega^{AB} = (\Omega^{-1})_{AB}$





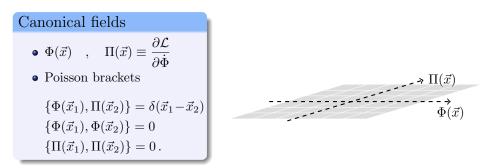


How to read Ω from Lagrangian

$$\mathcal{L} = \mathcal{L}(q, \dot{q}) \quad \Rightarrow \quad \delta \mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial q} - \partial_t (\frac{\partial \mathcal{L}}{\partial \dot{q}})\right) \delta q + \frac{\mathrm{d}}{\mathrm{d}t} (p \, \delta q) \frac{\mathrm{d}}{\mathrm{d}t} (p \, \delta q) \quad \rightarrow \quad p \, \delta q \quad \rightarrow \quad \Omega = \delta(p \, \delta q) = \delta p \wedge \delta q \,.$$

Conserved charge

- charge variation for a vector field $v \Rightarrow \delta H_v \equiv v \cdot \Omega$
- Example: $v = \partial_q \implies \delta H_v = \partial_q \cdot \Omega = \delta p \implies H_v = p$



General covariance?

• In canonical method, it is necessary to introduce time foliations, which usually breaks the general covariance.

Covariant manifold \mathcal{M}

Given a covariant action $S = \int \mathbf{L}[\Phi]$ in *d*-dim spacetime:

• manifold \mathcal{M} is composed of dynamical field $\Phi(x^{\mu})$

• $\Phi(x^{\mu})$: metric $g_{\alpha\beta}(x^{\mu})$, gauge field $A_{\nu}(x^{\mu})$, scalar fields $\phi(x^{\mu})$...

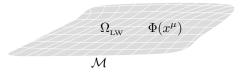
Symplectic 2-form Ω

(1) picking the $\Theta_{_{LW}}$ from $\delta \mathbf{L}[\Phi] = \mathbf{E}(\Phi)\delta\Phi + d\Theta_{_{LW}}(\delta\Phi, \Phi)$

(2) exterior derivation on the phase space:

$$\boldsymbol{\omega}_{\scriptscriptstyle \rm LW}(\delta_1\Phi,\delta_2\Phi,\Phi)\equiv\delta_1\boldsymbol{\Theta}_{\scriptscriptstyle \rm LW}(\delta_2\Phi,\Phi)-\delta_2\boldsymbol{\Theta}_{\scriptscriptstyle \rm LW}(\delta_1\Phi,\Phi)$$

(3) the Lee-Wald symplectic form Ω would be: $\Omega_{\rm LW} \equiv \int_{\Sigma} \omega_{\rm LW}$,



Ambiguity

Ambiguity in the definition of Θ through $\delta \mathbf{L}[\Phi] = \mathbf{E}(\Phi)\delta\Phi + d\Theta(\delta\Phi, \Phi)$:

$$\Theta(\delta\Phi, \Phi) \to \Theta(\delta\Phi, \Phi) + \mathrm{d}\mathbf{Y}(\delta\Phi, \Phi)$$

• It results in an ambiguity in the symplectic structure:

 $\boldsymbol{\omega}(\delta_1\Phi,\delta_2\Phi,\Phi) \to \boldsymbol{\omega}(\delta_1\Phi,\delta_2\Phi,\Phi) + d\big(\delta_2\mathbf{Y}(\delta_1\Phi,\Phi) - \delta_1\mathbf{Y}(\delta_2\Phi,\Phi)\big)$

Conditions for independence of Ω from Σ

$$d\boldsymbol{\omega}(\delta_1\Phi,\delta_2\Phi,\Phi) = 0$$
 and $\boldsymbol{\omega}(\delta_1\Phi,\delta_2\Phi,\Phi)\Big|_{\partial\Sigma} = 0$,

• the former is satisfied if Φ and $\delta\Phi$ satisfy e.o.m and linearized e.o.m respectively \Rightarrow we will assume on-shell-ness here after.

• for the latter, one usually needs to impose some fall-off conditions on $\delta \Phi$.

Conserved charges

• Let us put diff and gauge transformations in a single set $\epsilon \equiv \{\xi, \lambda\}$:

$$\delta_{\epsilon}\Phi = \mathcal{L}_{\xi}\Phi + \delta_{\lambda}A$$

Charge variation associated with ϵ

- Any generator $\epsilon \equiv \{\xi, \lambda\}$ (with arbitrary $\delta \epsilon$) induces a vector field $v = \delta_{\epsilon} \Phi$ on the $T\mathcal{M}$.
- The charge variation for the ϵ is defined as

$$\boldsymbol{\delta H_{\epsilon}} \equiv \boldsymbol{v} \cdot \boldsymbol{\Omega} = \int_{\boldsymbol{\Sigma}} \left(\boldsymbol{\delta}^{[\Phi]} \boldsymbol{\Theta}(\boldsymbol{\delta}_{\epsilon} \boldsymbol{\Phi}, \boldsymbol{\Phi}) - \boldsymbol{\delta}_{\epsilon} \boldsymbol{\Theta}(\boldsymbol{\delta} \boldsymbol{\Phi}, \boldsymbol{\Phi}) \right)$$

Fundamental theorem of the covariant phase space formalism

$$\delta^{[\Phi]} \boldsymbol{\Theta}(\delta_{\epsilon} \Phi, \Phi) - \delta_{\epsilon} \boldsymbol{\Theta}(\delta \Phi, \Phi) = \mathrm{d} \boldsymbol{k}_{\epsilon}(\delta \Phi, \Phi)$$

Stokes theorem
$$\Rightarrow \delta H_{\epsilon} = \oint_{\partial \Sigma} \mathbf{k}_{\epsilon} (\delta \Phi, \Phi)$$

Conservation conditions

For all $\Phi \in \mathcal{M}$ and $\delta \Phi \in T\mathcal{M}$:

$$\left. \mathrm{d}\boldsymbol{\omega}(\delta\Phi, \delta_{\epsilon}\Phi, \Phi) = 0 \right., \qquad \boldsymbol{\omega}(\delta\Phi, \delta_{\epsilon}\Phi, \Phi) \Big|_{\partial\Sigma} = 0 \,.$$

Not any generator ϵ has conserved charge.

Integrability condition

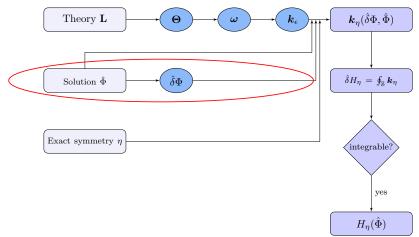
For all $\delta_1 \Phi, \delta_2 \Phi \in T\mathcal{M}$:

$$(\delta_1\delta_2 - \delta_2\delta_1)H_{\epsilon} = 0, \Rightarrow \oint_{\partial\Sigma} \left(\xi \cdot \boldsymbol{\omega}(\delta_1\Phi, \delta_2\Phi, \Phi) + \boldsymbol{k}_{\delta_1\epsilon}(\delta_2\Phi, \Phi) - \boldsymbol{k}_{\delta_2\epsilon}(\delta_1\Phi, \Phi) \right) = 0.$$

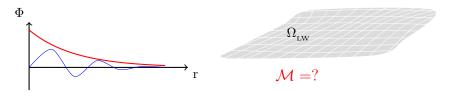
• Not any generator ϵ has integrable charge.

• Lee and Wald (1990), Wald and Zoupas (2000), G. Compère et al. (2016).

Solution phase space



Standard fall-off conditions



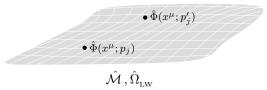
- In the standard covariant phase space formulation, *M* is introduced by some fall-off conditions.
- The fall-off conditions, although restrict the manifold, but do not identify it completely.

15/32 Nebula



solution phase space

Focussing on a set of (black Hole) solutions identified by some parameters $\hat{\Phi}(x^{\mu}; p_j)$



Manifold M → "solution phase space manifold" Â built of Φ(x^μ; p_i)
 Ω → Ω_{LW} confined to Â

► $T\mathcal{M} \longrightarrow T\hat{\mathcal{M}}$ is spanned by "parametric variations": $\hat{\delta}\Phi \equiv \frac{\partial \hat{\Phi}}{\partial p_i}\delta p_j$

Kerr solution phase space

- Theory: Einstein-Hilbert $\mathcal{L} = \frac{1}{16\pi G}R$
- Dynamical field $\hat{\Phi}$: the metric $g_{\mu\nu}$
- The k_{ξ} : It is dual to

$$k_{\xi}^{\mu\nu} = \frac{1}{16\pi G} \Big[\xi^{\nu} \nabla^{\mu} h - \xi^{\nu} \nabla_{\tau} h^{\mu\tau} + \xi_{\tau} \nabla^{\nu} h^{\mu\tau} + \frac{1}{2} h \nabla^{\nu} \xi^{\mu} - h^{\tau\nu} \nabla_{\tau} \xi^{\mu} \Big] - [\mu \leftrightarrow \nu]$$

in which $h^{\mu\nu} \equiv q^{\mu\sigma} q^{\nu\tau} \delta q_{\sigma\tau}$ and $h \equiv h^{\mu}$.

• Manifold $\hat{\mathcal{M}}$:

$$ds^{2} = -(1-f)dt^{2} + \frac{\rho^{2}}{\Delta_{r}}dr^{2} + \rho^{2}d\theta^{2} - 2fa\sin^{2}\theta \,dtd\varphi + (r^{2} + a^{2} + fa^{2}\sin^{2}\theta)\sin^{2}\theta \,d\varphi^{2},$$

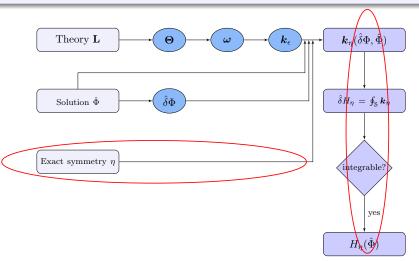
$$a^{2} = -a^{2} + a^{2}\cos^{2}\theta - a^{2} + a^{2}$$

$$\rho^2 \equiv r^2 + a^2 \cos^2 \theta$$
, $\Delta_r \equiv r^2 + a^2 - 2Gmr$, $f \equiv \frac{2Gmr}{\rho^2}$,

- Parameters: $p_j = \{m, a\}$
- Parametric variations $\hat{\delta}\Phi$:

$$\hat{\delta}g_{\mu\nu} = \frac{\partial\hat{g}_{\mu\nu}}{\partial m}\delta m + \frac{\partial\hat{g}_{\mu\nu}}{\partial a}\delta a$$

Conserved charges associated with exact symmetries



5

Symplectic symmetry generator

Definition: A generator $\epsilon = \{\xi, \lambda\}$ is called symplectic symmetry generator if

 $\boldsymbol{\omega}(\delta\Phi,\delta_{\epsilon}\Phi,\Phi)=0$

on-shell for all Φ and $\delta \Phi$ in \mathcal{M} and $T\mathcal{M}$.

Two nice features

 \blacktriangleright Conservation: symplectic symmetry generator \longrightarrow conservation is guaranteed:

$$d\boldsymbol{\omega}(\delta\Phi,\delta_{\epsilon}\Phi,\Phi) = 0, \qquad \boldsymbol{\omega}(\delta\Phi,\delta_{\epsilon}\Phi,\Phi)\Big|_{\partial\Sigma} = 0 \quad \checkmark$$

▶ Independence of $\partial \Sigma$: symplectic symmetry generator \longrightarrow the δH_{ϵ} is independent of chosen codimension-2 surface of integration:

$$\oint_{\mathbb{S}_2} \boldsymbol{k}_{\epsilon}(\delta\Phi, \Phi) - \oint_{\mathbb{S}_1} \boldsymbol{k}_{\epsilon}(\delta\Phi, \Phi) = \int_{\Sigma} \boldsymbol{\omega}(\delta\Phi, \delta_{\xi}\Phi, \Phi) = 0$$

Exact symmetry generators

Non-exact and exact symplectic symmetry generators

Symplectic symmetry generators are composed of two sets:

1 non-exact symmetries: $\chi = \{\xi, \lambda\}$ is called non-exact symmetry if

$$\exists \Phi \in \mathcal{M} : \qquad \delta_{\chi} \Phi \neq 0$$

2 exact symmetries: $\eta = \{\zeta, \lambda\}$ is called exact symmetry if

$$\forall \Phi \in \mathcal{M} : \quad \delta_{\eta} \Phi = 0$$

• Exact symplectic symmetries are in our main focus in the "solution phase space method".

No ambiguity

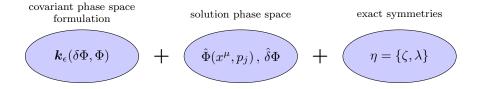
 \blacktriangleright Exact symmetries \longrightarrow charges are unambiguous:

inear in
$$\delta_{\eta} \Phi = 0$$

$$\boldsymbol{\omega}(\delta\Phi,\delta_{\eta}\Phi,\Phi) \to \boldsymbol{\omega}(\delta\Phi,\delta_{\eta}\Phi,\Phi) + d\big(\delta_{\eta}\mathbf{Y}(\delta\Phi,\Phi) - \delta\mathbf{Y}(\delta_{\eta}\Phi,\Phi)\big)$$

Putting pieces together

Putting pieces together



Conserved charge associated with η

Conserved charge associated with the exact symmetry $\eta = \{\zeta, \lambda\}$:

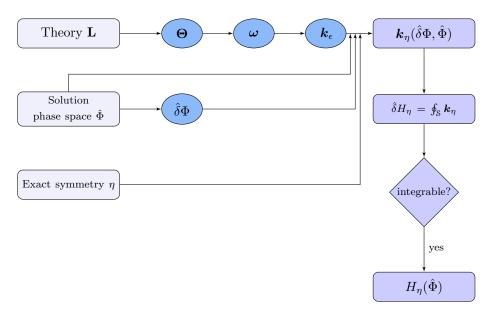
$$\hat{\delta}H_{\eta} = \oint_{\mathbb{S}} \boldsymbol{k}_{\eta}(\hat{\delta}\Phi, \hat{\Phi}) \,.$$

Integrability condition:

$$\oint_{\mathcal{S}} \left(\zeta \cdot \hat{\boldsymbol{\omega}}(\hat{\delta}_1 \Phi, \hat{\delta}_2 \Phi, \hat{\Phi}) + \boldsymbol{k}_{\hat{\delta}_1 \eta}(\hat{\delta}_2 \Phi, \Phi) - \boldsymbol{k}_{\hat{\delta}_2 \eta}(\hat{\delta}_1 \Phi, \hat{\Phi}) \right) = 0, \quad \forall \hat{\delta}_{1,2} \Phi \text{ and } \forall \hat{\Phi}.$$

If integrable, then $H_{\eta}[\hat{\Phi}] = \int_{\bar{p}}^{p} \hat{\delta} H_{\eta} + H_{\eta}[\bar{\Phi}]$

Overall view



Thermodynamical conserved charges

• Mass:

$$\eta_M = \{\partial_t, 0\} \longrightarrow \hat{\delta}M \equiv \hat{\delta}H_\eta$$

• Angular momentum:

$$\eta_J = \{\partial_{\varphi}, 0\} \longrightarrow \hat{\delta}J \equiv -\hat{\delta}H_\eta$$

• Electric charge:

$$\eta_Q = \{0,1\} \quad \longrightarrow \quad \hat{\delta}Q \equiv \hat{\delta}H_\eta$$

• Entropies:

$$\eta_{S_{\rm H}} = \frac{2\pi}{\kappa_{\rm H}} \{ \zeta_{\rm H}, -\Phi_{\rm H} \} \quad \longrightarrow \quad \hat{\delta}S_{\rm H} \equiv \hat{\delta}H_{\eta}$$

First law(s)

 $\eta_{\scriptscriptstyle S_{_{_{\mathrm{H}}}}} = \mu_{\scriptscriptstyle M} \eta_{\scriptscriptstyle M} + \mu_{\scriptscriptstyle J} \eta_{\scriptscriptstyle J} + \mu_{\scriptscriptstyle Q} \eta_{\scriptscriptstyle Q} \quad \xrightarrow{\text{linearity of } \delta H_\epsilon \text{ in } \epsilon} \quad \delta S_{_{_{\mathrm{H}}}} = \mu_{\scriptscriptstyle M} \delta M - \mu_{\scriptscriptstyle J} \delta J + \mu_{\scriptscriptstyle Q} \delta Q$

4 Application: Kerr-Newman-(A)dS charges and first law(s)

• Theory:
$$\mathcal{L} = \frac{1}{16\pi G} (R - F^2 - 2\Lambda)$$

k_ϵ(δΦ, Φ) : For the theory under consideration, and for diffeomorphism+gauge transformation ϵ = {ξ, λ}

$$\boldsymbol{k}_{\epsilon}(\delta\Phi,\Phi) = \frac{\sqrt{-g}}{2!\,2!} \,\epsilon_{\mu\nu\sigma\rho} \left(k_{\epsilon}^{\mathrm{EH}\,\mu\nu} + k_{\epsilon}^{\mathrm{M}\,\mu\nu}\right) \,\mathrm{d}x^{\sigma} \wedge \mathrm{d}x^{\rho}$$

in which

$$\begin{split} k_{\xi}^{\mathrm{EH}\,\mu\nu} &= \frac{1}{16\pi G} \left(\left[\xi^{\nu} \nabla^{\mu} h - \xi^{\nu} \nabla_{\tau} h^{\mu\tau} + \xi_{\tau} \nabla^{\nu} h^{\mu\tau} + \frac{1}{2} h \nabla^{\nu} \xi^{\mu} - h^{\tau\nu} \nabla_{\tau} \xi^{\mu} \right] - \left[\mu \leftrightarrow \nu \right] \right), \\ k_{\epsilon}^{\mathrm{M}\,\mu\nu} &= \frac{1}{8\pi G} \left(\left[\left(\frac{-h}{2} F^{\mu\nu} + 2F^{\mu\rho} h_{\rho}^{\ \nu} - \delta F^{\mu\nu} \right) (\xi^{\sigma} A_{\sigma} + \lambda) - F^{\mu\nu} \xi^{\rho} \delta A_{\rho} - 2F^{\rho\mu} \xi^{\nu} \delta A_{\rho} \right] - \left[\mu \leftrightarrow \nu \right] \right) \\ & \text{where } h^{\mu\nu} \equiv g^{\mu\sigma} g^{\nu\tau} \delta g_{\sigma\tau} \text{ and } h \equiv h_{\mu}^{\mu}. \end{split}$$

• Solution phase space $\hat{\mathcal{M}}$:

$$ds^{2} = -\Delta_{\theta} \left(\frac{1 - \frac{\Lambda r^{2}}{3}}{\Xi} - \Delta_{\theta} f\right) dt^{2} + \frac{\rho^{2}}{\Delta_{r}} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} - 2\Delta_{\theta} f a \sin^{2} \theta \, dt d\varphi$$
$$+ \left(\frac{r^{2} + a^{2}}{\Xi} + f a^{2} \sin^{2} \theta\right) \sin^{2} \theta \, d\varphi^{2} \,,$$
$$\rho^{2} \equiv r^{2} + a^{2} \cos^{2} \theta \,, \qquad \Delta_{r} \equiv (r^{2} + a^{2})(1 - \frac{\Lambda r^{2}}{3}) - 2Gmr + q^{2} \,,$$
$$\Delta_{\theta} \equiv 1 + \frac{\Lambda a^{2}}{3} \cos^{2} \theta \,, \qquad \Xi \equiv 1 + \frac{\Lambda a^{2}}{3} \,, \qquad f \equiv \frac{2Gmr}{\rho^{2}\Xi^{2}} \,,$$

$$\hat{A}_{\mu} \mathrm{d}x^{\mu} = \frac{qr}{\rho^2 \Xi} (\Delta_{\theta} \mathrm{d}t - a \sin^2 \theta \,\mathrm{d}\varphi) \,.$$

- Parameters: $p_j = \{m, a, q\}$
- Parametric variations:

$$\hat{\delta}g_{\mu\nu} = \frac{\partial \hat{g}_{\mu\nu}}{\partial m}\delta m + \frac{\partial \hat{g}_{\mu\nu}}{\partial a}\delta a + \frac{\partial \hat{g}_{\mu\nu}}{\partial q}\delta q , \qquad \hat{\delta}A_{\mu} = \frac{\partial \hat{A}_{\mu}}{\partial m}\delta m + \frac{\partial \hat{A}_{\mu}}{\partial a}\delta a + \frac{\partial \hat{A}_{\mu}}{\partial q}\delta q$$

Application: Kerr-Newman-(A)dS black holes

• Mass:
$$\eta_M = \{\partial_t, 0\}$$

 $\hat{\delta}M = \frac{\partial \left(\frac{m}{\Xi^2}\right)}{\partial m} \delta m + \frac{\partial \left(\frac{m}{\Xi^2}\right)}{\partial a} \delta a + \frac{\partial \left(\frac{m}{\Xi^2}\right)}{\partial q} \delta q = \delta(\frac{m}{\Xi^2}) \qquad \Rightarrow \qquad M = \frac{m}{\Xi^2},$

$$\begin{array}{l} \bullet \quad Angular \ momentum: \ \eta_J = \{\partial_{\varphi}, 0\} \\ \\ \hat{\delta}J = \frac{\partial \left(\frac{ma}{\Xi^2}\right)}{\partial m} \delta m + \frac{\partial \left(\frac{ma}{\Xi^2}\right)}{\partial a} \delta a + \frac{\partial \left(\frac{ma}{\Xi^2}\right)}{\partial q} \delta q = \delta(\frac{ma}{\Xi^2}) \qquad \Rightarrow \qquad J = \frac{ma}{\Xi^2} \ . \end{array}$$

Electric charge:
$$\eta_Q = \{0, 1\}$$

 $\hat{\delta}Q = \frac{\partial(\frac{q}{\Xi})}{\partial m}\delta m + \frac{\partial(\frac{q}{\Xi})}{\partial a}\delta a + \frac{\partial(\frac{q}{\Xi})}{\partial q}\delta q = \delta(\frac{q}{\Xi}) \implies Q = \frac{Q}{\Xi}$

• Reference points: M = 0, J = 0 and Q = 0 in pure (A)dS spacetime.

Application: Kerr-Newman-(A)dS black holes

Surface gravity, angular velocity and electric potential for any horizon:

$$\kappa_{\rm H} = \frac{r_{\rm H} (1 - \frac{\Lambda a^2}{3} - \Lambda r_{\rm H}^2 - \frac{a^2 + q^2}{r_{\rm H}^2})}{2(r_{\rm H}^2 + a^2)} \,, \qquad \Omega_{\rm H} = \frac{a(1 - \frac{r_{\rm H}^2}{l^2})}{r_{\rm H}^2 + a^2} \,, \qquad \Phi_{\rm H} = \frac{qr_{\rm H}}{r_{\rm H}^2 + a^2} \,.$$

► Entropies: $\eta_{\rm H} = \frac{2\pi}{\kappa_{\rm H}} \{ \zeta_{\rm H}, -\Phi_{\rm H} \}$ in which $\zeta_{\rm H} = \partial_t + \Omega_{\rm H} \partial_{\varphi}$

$$\hat{\delta}S_{\mathrm{H}} = \frac{\partial \left(\frac{\pi (r_{\mathrm{H}}^{2} + a^{2})}{G\Xi}\right)}{\partial m} \delta m + \frac{\partial \left(\frac{\pi (r_{\mathrm{H}}^{2} + a^{2})}{G\Xi}\right)}{\partial a} \delta a + \frac{\partial \left(\frac{\pi (r_{\mathrm{H}}^{2} + a^{2})}{G\Xi}\right)}{\partial q} \delta q = \delta \left(\frac{\pi (r_{\mathrm{H}}^{2} + a^{2})}{G\Xi}\right),$$

$$\Rightarrow \qquad S_{\rm H} = \frac{\pi (r_{\rm H}^2 + a^2)}{G\,\Xi}\,. \label{eq:SH}$$

Reference points:

• Event horizons:
$$S_{\rm H} = 0$$
 on pure (A)dS.

• Cosmological horizons: $S_{\rm H} = \frac{\pi l^2}{G}$ on pure dS.

Application: Kerr-Newman-(A)dS black holes

First law(s)

$$\eta_{\mathrm{H}} = \frac{2\pi}{\kappa_{\mathrm{H}}} \{\partial_t, 0\} + \frac{2\pi\Omega_{\mathrm{H}}}{\kappa_{\mathrm{H}}} \{\partial_{\varphi}, 0\} - \frac{2\pi\Phi_{\mathrm{H}}}{\kappa_{\mathrm{H}}} \{0, 1\} \,,$$

First law(s): linearity of δH_{η} in η , for each one of the horizons, results to

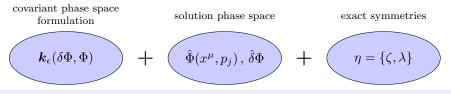
$$\delta S_{\rm H} = \frac{2\pi}{\kappa_{\rm H}} \delta M - \frac{2\pi}{\kappa_{\rm H}} \Omega_{\rm H} \delta J - \frac{2\pi}{\kappa_{\rm H}} \Phi_{\rm H} \delta Q$$

which by Hawking temperature(s) $T_{\rm H} = \frac{\kappa_{\rm H}}{2\pi}$ yields the first law(s)

$$\delta M = T_{\rm H} \delta S_{\rm H} + \Omega_{\rm H} \delta J + \Phi_{\rm H} \delta Q \,. \label{eq:deltaM}$$

 Notice that thermodynamics of Kerr-AdS, Kerr and Kerr-dS has been unified.
 K. Hajian, "Conserved Charges and First Law of Thermodynamics for Kerr-de Sitter Black Holes," arXiv:1602.05575 [gr-qc].

Conclusion



Conserved charges in solution phase space method:

- are calculable:
 - in any covariant gravitational theory,
 - in any dimensions,
 - in any asymptotics,
- are covariant,
- are unambiguous,
- are independent of the chosen codimension-2 surface of integration,
- are regular automatically,
- put entropy and electric charge in a single formulation with mass and angular momenta,

 \bullet make the first law equivalent to an identity between generators.

Thanks for your attention