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Two main lines of formulating quasi-local conserved charges:

@ Space+time — Hamiltonian formulation:

Komar (1958),

Arnowitt-Deser-Misner (ADM) (1959-62),

Bondi-van der Burg-Metzner (1962), Sachs (1962),
Regge-Teitelboim (1974),

Brown-York, (1993), Balasubramanian-Kraus (1999),
Abbott-Deser (1982),

Deser-Tekin (2003),

Kim-Kulkarni-Yi (2013).

@ Spacetime — Lagrangian formulation:

Crnkovic-Witten, (1987),
Ashtekar-Bombelli-Koul, (1987),
Lee-Iyer-Wald-Zoupas, (1990,93,99),
Barnich-Brandt (2002),

B In this talk, we will focus on the Lagrangian formulation.
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Conserved charges, which will be introduced,:

e are calculable:
e in any covariant gravitational theory,
e in any dimensions,
e in any asymptotics,

@ are covariant,

@ are unambiguous,

o are independent of the chosen codimension-2 surface of integration,
o are regular automatically,

@ put entropy and electric charge in a single formulation with mass and
angular momenta,

o relax the calculation of entropy over the horizon,

o make the first law equivalent to an identity between generators.
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@ A review on covariant phase space formulation
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@ Application: Kerr-Newman-(A)dS charges and first law(s)
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A review on covariant phase space method J
Theory L K, (50, D)
Solution & @ SHTI = fs kn

Exact symmetry n (ntegrable?
yes

v

6/ 32



B e o @D L)

Phase space is a manifold M

A B
equipped with Q@ =Q, ,6X §X
such that:

0 Q5 =-05, Phase Space
Q () be closed:

0N =0

@ 2 be non-degenerate:

B B XAﬁ
Qpv =0 & v =0 M

Manifold M with symplectic 2-form 2

» () is invertible:

AB

Q = (Q_l)AB
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e X' =g , X2
0 -1
° i = (1 0)
° {q7p}:13
{¢,4} ={p.p} =0

L=L(gq) = 5c_(
d

sdg) — piq

— 0/(%))da + & (pda)
— Q=0(pdg) =0pAdq.

» charge variation for a vector field v

e Example: v = 0, =

= 0H,=v-9Q
Hvzp
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o33 , H@)=2%

o Poisson brackets 2 T(T)
{®(71), H(Z2)} = 6(T1—72) — ::__::: s :I’-Ef)
{@(71), 2(Z2)} = 0 ]

{I1(71), I(#2)} = 0.

B [n canonical method, it is necessary to introduce time foliations, which
usually breaks the general covariance.
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Covariont manifold M|

Given a covariant action

S = [L[®] in d-dim spacetime: covariant phase space
» manifold M is composed of

dynamical field ®(z") Qw ")
e d(z"): metric gog(z"), gauge M

field A, (z"), scalar fields ¢(z")...

(1) picking the @, from JL[®] = E(®)0® + dO,, (6P, D)

(2) exterior derivation on the phase space:

Wiw ((51@, 52(137 ‘I’) = 51@LW (62@, (I)) — 52@LW (51@, ‘P)

(3) the Lee-Wald symplectic form Q would be: Q,, = [5 wyy ,
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Ambiguity

Ambiguity in the definition of ® through JL[®] = E(®)i® + dO (6P, D):
O(5P, D) —» O>6P, D) +dY (6P, D)

» It results in an ambiguity in the symplectic structure:

W(31®, 62D, D) — w (8, P, 6,8, ®) + d(5,Y (5, D, D) — 6, Y (6,0, D))

Conditions for independence of €2 from ¥

dw(513,0,8,8) =0  and w(51<1>,52<1>,<1>)‘aZ —0,

B the former is satisfied if ® and §® satisfy e.o.m and linearized e.o.m
respectively = we will assume on-shell-ness here after.

B for the latter, one usually needs to impose some fall-off conditions on §®.
11 /32
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@ Let us put diff and gauge transformations in a single set e = {£, A\ }:

0P = Lg@ + 0\A

B Any generator € = {¢, A} (with arbitrary de) induces a vector field v = §.P on
the T M.

B The charge variation for the € is defined as

SH.=v-Q= / (67 05D, ) — 5.0(50, D))
)]

505,82, D) — 6.0(5®, D) = dk. (6D, D)

Stokes theorem = |0H. = k.(6@, D)
0%
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For all ® € M and §® € TM:

dw(52,6:0,8) =0,  w(0P,5.2,9)| =0.

» Not any generator € has conserved charge.

For all 61P,0.P € TM:

(152 = B2 H =0, 5 § (£ 0l010,6028,9) + by, (529, 9) — Kiye(518,9)) =0,
P

» Not any generator € has integrable charge.

@ Lee and Wald (1990), Wald and Zoupas (2000), G. Compere et al. (2016). J
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Solution phase space }

Solution &

Theory L . . .- kn(&I), ®)
N
()

B, = fy ke

Exact symmetry 7

integrable?

Hy(®)
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B In the standard covariant phase space formulation, M is introduced by
some fall-off conditions.

B The fall-off conditions, although restrict the manifold, but do not
identify it completely.

-
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solution phase space

o O(at;pf)

* &(z;p;)

Focussing on a set of (black A
Hole) solutions identified by M 7QLW

some parameters <i>(z“’; D)

» Manifold M —  “solution phase space manifold” M built of &(z*;p;)

» Q@ — Q. confined to M

» TM —» TM is spanned by “parametric variations”: 50 = gf 0p;
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Kerr solution phase space

@ Theory: Einstein-Hilbert £ = R

G
e Dynamical field : the metric Juv
@ The k¢: It is dual to

K = ﬁ [g"v#h — €YV hPT 4+ £, VYRR 4 %hv”f“ - h”vfgﬂ] [ v
in which h* = ¢"?¢""6g,- and h = h#,,.
e Manifold M:
ds? = —(1—f)dt? + 2—2er + p2d0? — 2fasin® 0 dtdp + (7'2 +a? + fa®sin? 0) sin? 0 dy? ,
' 2Gmr

p? =12 +a%cos?0, Ay =72 +a% — 2Gmr, f= 3
p

b
o Parameters: p; = {m,a}
@ Parametric variations J®:

99y 99
om 6m + da oa

Oguy =
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Conserved charges associated with exact symmetries J

Theory L ‘ ‘
Solution ® .

Exact symmetry n

N
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Definition: A generator e = {£, A} is called symplectic symmetry generator if
w(6P,0.P,P) =0

on-shell for all ® and §® in M and T M.

» Conservation: symplectic symmetry generator ~—>  conservation is
guaranteed:

dw(5®,6.®, B) =0, w(5q>,5€q>,q>)|6z _g \/

» Independence of 83: symplectic symmetry generator —  the 0H. is
independent of chosen codimension-2 surface of integration:

?{ ke(acb,cb)—f k€(5<I>,d>):/Ew(6<I>,6E<I>,<I>):O

82 S1
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Symplectic symmetry generators are composed of two sets:

@ non-exact symmetries: x = {£, A} is called non-exact symmetry if
3P e M: 5@ #£0
@ exact symmetries: n = {(, A} is called exact symmetry if

VOeM:  6,0=0

» Exact symplectic symmetries are in our main focus in the “solution phase
space method”.

» Exact symmetries —— charges are unambiguous:

linear in 6,® =0

w(3®,6,B, ) — w(5®,5,®, ) + d(5,Y (59, (6,®, ®))
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Putting pieces together }
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covariant phase space

formulation solution phase space exact symmetries

ke(éq)u q>) + é(.’lﬁ“,pj) ) Sq)

Conserved charge associated with the exact symmetry n = {¢, A}:

6H, :?{kn(&b,«i).
8

Integrability condition:
i (g L &(519, 82D, D) + Ky, (329, D) — ks, (519, <i>)) =0, V612® and V.

If integrable, then H,[®] = I 6H, + H,[®]
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Solution SH, — 6.k ]
phase space ® T fs !

l Exact symmetry n |

integrable?
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@ Mass: .
Ny = 10,0} — O0M =06H,

@ Angular momentum:

n, ={8,,0} — &J=—0H,

@ Electric charge: N .
N = {0,1} — 0Q=0H,

o Entropies:

2 a .
Ns, = — {¢y, =Py} — 0SSy =0H,
H

1i ity of 6H, i
My = Hagllas HiyTy FHglg —————— Sy = p SM—p1,6J+1156Q
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Application: Kerr-Newman-(A)dS charges and first law(s) J
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@ Theory: £ = 75(R— F? —2A)

@ kc(8®, ®) : For the theory under consideration, and for
diffeomorphism+gauge transformation e = {£, A}

k. (60, D) = 7;'_2'9 €pvop (KETH 4 EMPYY dz® A da?
in which
EHuv_ 1 > » = e o Lo —w -
R = ([6V 94 = €V B4 4+ £,V T 4 ShVER — TV ] — [ 0l)

Mpv_ 1L =l i » ® u >
ket :%([(TF“ +2FHPR,Y — SF) (67 Ag + ) — FUYEPSA, — 2FPHE 5 A, | — [ > 1))

where A" = ¢g"7¢""6gor and h = ht),.
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@ Solution phase space M:
A’!‘
ds® = —Ag( —Agf)dt? +£ dr +§ d6? — 2As fasin® 0 dtdy
r?+ a2 2 2
—|—( = +fa sin H)Sin 0de”,
2 2 2 2 2 2 Ar® 2
p =r"+a“cos" 0, A= (r —‘,—a)(l—?)—ZGmr—i—q,
- Aa®> — Aa® _ 2Gmr
Ag:l—i—Tcos 0, ::1+T’ ]CZPQ?7
A,da" = quTE(Agdt — asin®0dy).
o Parameters: p; = {m,a,q}
@ Parametric variations:
R Gy Gy Gy R dA,, 0A, DA,
v = 5 A =
0Guw = O om +8 da + 8qc5q 0A, 8m6m+86+8q5
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> Mass: n,, = {0, 0}

o 0(Z) (%),  0(&), m _m
oM = o om + 9a da + 4 6q—5(§) = M_ﬁ’

> Angular momentum: n, = {0,,0}

s, 0(%) o),  0(%#) . _ . ma _ma
> Electric charge: ng = {0,1}
o _0@),  0E). &), _ 4 g
0Q = B om + % da + 94 5q—5(§) = Q_E

B Reference points: M =0, J =0 and @ = 0 in pure (A)dS spacetime.
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B Surface gravity, angular velocity and electric potential for any horizon:

Aa? 2 (124»(12 2
ro(1— 22 —Ar2 — 235 TH
e — H( 3 H TH ) Q _ a(l — l72) _ q’]‘H
H 2(r2 + a?) ’ H r2 +a? ’ B2 4a?

> Entropies: nyg = 2={(,, —®,} in which ¢, = 9 + Q,0,
H

w(r2 +a?) m(r2 +a?) n(r2 +a?)
o CED) () o) e
08y = om bm+ da bat dq = 6( G= ) ’
m(rZ +a?)

B Reference points:
@ Event horizons: S; = 0 on pure (A)dS.

@ Cosmological horizons: S; = % on pure dS.
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Fistlaw(s)

et = —{at,0}+ WH {0,,0} — 2”‘1"* (0,1},

> First law(s): linearity of dH, in 7, for each one of the horizons, results to

oSy = —5M = —Q 0J — —@ 10Q

Ry Ky
which by Hawking temperature(s) T, = ;—2 yields the first law(s)

SM = Ty 58, + Q07 + ©,6Q .

» Notice that thermodynamics of Kerr-AdS, Kerr and Kerr-dS has been unified.
K. Hajian, “Conserved Charges and First Law of Thermodynamics for Kerr-de Sitter
Black Holes,” arXiv:1602.05575 [gr-qc].
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covariant phase space

formulation solution phase space exact symmetries

k(0,0) ) +

Conserved charges in solution phase space method:

e are calculable:
e in any covariant gravitational theory,

e in any dimensions,
e in any asymptotics,
@ are covariant,
@ are unambiguous,
o are independent of the chosen codimension-2 surface of integration,
@ are regular automatically,

@ put entropy and electric charge in a single formulation with mass and
angular momenta,

/2 make the first law equivalent to an identity between generators.
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