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Quark-Gluon Plasma 

Quark-Gluon Plasma is formed in Heavy Ion Collision at RHIC and LHC. 
  

What is QGP?

A quark-gluon plasma is a phase of QCD which exist at extremely
high temperature and/or density, which consists of free quarks and
gluons.

What is the behaviour of QGP?

I Weak coupled plasma: quasiparticle gas. The viscosity/entropy ratio

⌘

s
⇠ mean free path

de Broglie wavelength
� 1

I Strong coupled plasma: collective flow.

⌘

s
=?

Fundamental theory (QCD) is well known; perturbation theory does
not work. What shall we do?
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Quark-Gluon Plasma 

T	
  Ludlum	
  and	
  L	
  McLerran,	
  
Phys.	
  Today	
  56N10	
  (2003)	
  

“Elliptic flow” inferred from RHIC data provides measure of         :

find in sQGP that          is really small!

free streaming       versus        collective flow

φ

 Quark-gluon fluid of RHIC behaves as nearly ideal, strongly coupled  fluid (sQGP). 
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Anisotropic initial 
geometry  

 
 
 
 

Anisotropic flow 

Elliptic flow 



Nearly Inviscid Flow 

•  η/s from hydro an order of magnitude 
smaller than pQCD estimate 

12/17/14 CERN Numerical Holography Workshop 10 

Schenke, Tribedy, Venugopalan, PRL 108:25231 (2012) 

Quark-Gluon Plasma 
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  (2012) 
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  and	
  
Romatschke,	
  	
  
Phys.Rev.C78:03
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Quark-Gluon Plasma 

Shear viscosity 

η
s
=
1
4π

≈ 0.08

η
s
< 0.1−0.2

Policastro, Son, and Starinets (2001) N=4 SYM: 

Hydrodynamics prediction:	
   Teaney (2003) 

Naive pQCD:  ~1
s
η

AdS/CFT  predicts a universal lower bound for the ratio of shear viscosity to entropy. 
Kovton, Son and Starinets (2003) 

 Lattice:  C0.13 0.03,   at T=1.65 T
s
η
= ± Meyer (2007) 

Rapid thermalization:                
Chesler  and Yaffe, PRL 106 (2011) 
Janik et all (2012),(2014) 5

τ therm ~ 0.35 fm



Hard Probes:	
  

Jets are produced within the expanding fireball and probe the QGP. 

Before they become hadronized and  create 

jets, the  scattered quarks radiate energy  

(~ GeV/fm) in the colored medium. 

The presence of hot matter 

modifies the properties of jets. 

QGP exists for  a few fm, making it impossible to study it using any external 

probes.  Use self-generated quarks/gluons/photons  
as probes of the medium 

Probing the hot matter 
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Nuclear Modification Factor: 

CMS Preliminary data 
(2012) 

Jet suppression 

Naively, if medium 
has no effect, then  
RAA =1.  
 
 
 
RAA<1 means jet 
quenching 
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Theoretical Method 

8

Two Common Theoretical Descriptions 

W. A. Horowitz, CERN Numerical Holography Workshop	
  

	
  We don’t have a consistent theoretical picture that describes all observables. 



Maldacena Conjecture 

Classical	
  gravity	
  on	
  AdSd+1 

Strongly	
  coupled	
  d	
  -­‐	
  dimensional	
  CFT	
  which	
  lives	
  on	
  
boundary	
  of	
  AdSd+1	
   

Maldacena	
  98	
  

Duality	
  unproven,	
  but	
  many	
  consistency	
  checks	
  performed.	
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AdS/CFT Correspondence 



Anti-de-Sitter space (AdS5) 

u	
  

AdS/CFT Correspondence 

5D	
  bulk	
  

4D	
  boundary	
  
0	
  

x	
   y	
  

string propagator 
in the bulk 

Two-point  
correlation functions 

u	
  plays	
  a	
  role	
  of	
  inverse	
  energy	
  scale	
  in	
  4D	
  theory	
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Light-Quark in string Setup 
N  = 4 Super-Yang-Mills theory in 4d in 
large NC and strong coupling limit 	
   A Classical supergravity on the 

 10d 

Studying the theory at finite temperature Adding black hole to the geometry: 
AdS-schwarzchild metric 

Fundamental quarks in theory  Open strings moving in the 10d 
geometry  

5
5AdS S×λ

Fundamental quark is dual to a string in the 
bulk with an endpoint attached to a D7-brane 
ending at um. 
 
 
 
 
 For a massive quark at rest: !! = !!!!!! !

1
!!
− 1
!!

!

D7	
   u=0	
  

u=um	
  

u=uh	
  



Thermalization distance 

12
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D7	
   u=0	
  

u=um	
  

u=uh	
  

Light Quarks                            Falling Strings	
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1
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where T0 =
√
λ/(2πL2) is the string tension (recall that λ is the ’t Hooft coupling and L is

the curvature radius of the AdS space); the world sheet coordinates are σa, where τ ≡ σ0

is denoted as the timelike world sheet coordinate and σ ≡ σ1 is the spatial coordinate; and

γ ≡ det γab, with γab the induced world sheet metric. The string profile is parameterized

by a set of embedding functions Xµ(τ,σ) for which

γab ≡ ∂aX · ∂bX (2.3)

and

− γ ≡ − det γab = (Ẋ ·X ′)2 − Ẋ2X ′ 2 , (2.4)

where Ẋµ ≡ ∂τXµ and X ′µ ≡ ∂σXµ. The equations of motion for the embedding func-

tions are obtained in the usual way by extremizing the action subject to certain boundary

conditions. For open strings, the boundary condition is that no momentum flows from the

end of the string, which implies that the string endpoints move transversely to the string

at the local speed of light.

The physical setup of interest is one of a back-to-back jet pair created in a quark-gluon

plasma. We therefore consider configurations for which the string is created at a point

and expands in space-time such that the two endpoints of the string move away from each

other; the total spatial momentum of the string vanishes. With an appropriate choice of

coordinates, in the rest frame of the plasma (equivalent to the rest frame for the whole

string) one half of the string has a large spatial momentum in the +x direction while the

other half of the string has a large spatial momentum in the −x direction; in this case the

embedding function of string Xµ(τ,σ) will be a map to (t(τ, σ), x(τ, σ), u(τ, σ)).

The profile of an open string that is created at a point in space at time t = tc is given by

t(0,σ) = tc , x(0,σ) = 0 , u(0,σ) = uc, (2.5)

where σ ∈ [0, π]. After the creation at time tc, the string evolves from a point into an

extended object and the string endpoints fall toward the horizon; see figure 1 for a visual-

ization of the string profile at various times after creation.

For precise numerical studies of the string profile, it is more convenient to use the

Polyakov action instead of the Nambu-Goto action [55, 59, 60]. The Polyakov action is

better suited for numerical study because the string’s equations of motion become singu-

lar whenever the determinant of the induced metric goes to zero; it turns out that the

induced metric develops a singularity at late times as the string accelerates toward the

black brane [55]. With the Polyakov action, one introduces additional degrees of freedom

into the problem by allowing a nontrivial worldsheet metric ηab; with these additional de-

grees of freedom, one can make the equations of motion well-behaved everywhere on the

worldsheet [55, 59, 60]. The Polyakov action for the string has the form

SP = −T0

2

∫
d2σ

√
−η ηab ∂aXµ∂bX

ν Gµν . (2.6)

Varying the Polyakov action with respect to ηab generates the constraint equation as follows

γab =
1

2
ηab η

cd γcd . (2.7)
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Having derived the equations of motion, we now need to supply physically relevant,

self-consistent initial conditions (IC) for the string profile. Self-consistency in this case

means the IC satisfy the equations of constraint and the boundary conditions. Using

eq. (2.11) in eq. (2.7) yields the constraint equations

Ẋ ·X ′ = 0 , Ẋ2 + Σ2X ′2 = 0 . (2.12)

The σ derivatives of Xµ are initially zero for the string with point-like IC. So, in order

to satisfy eq. (2.12) we just need to choose IC that satisfy Ẋ2 = 0 and obey the boundary

condition eq. (2.10). The constraint equations are initially satisfied by the following relation

in the AdS-Sch metric,

f ṫ 2 = ẋ2 +
u̇2

f
. (2.13)

To proceed it is useful to express the general formula of the canonical momentum

densities associated with the string in the AdS-Sch metric. From eq. (2.9), we have

⎛

⎜⎝
Πτ

t

Πτ
x

Πτ
u

⎞

⎟⎠ =

√
λ

2π

⎛

⎜⎝
− f(u)

Σu2 ṫ
1

Σu2 ẋ
1

Σ f(u)u2 u̇

⎞

⎟⎠ ,

⎛

⎜⎝
Πσ

t

Πσ
x

Πσ
u

⎞

⎟⎠ =

√
λ

2π

⎛

⎜⎝

f(u)Σ
u2 t′

− Σ
u2 x′

− Σ
f(u)u2 u′

⎞

⎟⎠ . (2.14)

The open string boundary condition eq. (2.10) requires X ′µ(τ,σ∗) = 0 for all τ . In par-

ticular, the open string boundary conditions hold at τ = 0, and we require that our IC

satisfy

x′(0, σ∗) = u′(0, σ∗) = t′(0, σ∗) = 0. (2.15)

Our solution is then guaranteed to satisfy the boundary conditions for all τ if we set

ẋ′(0,σ∗) = u̇′(0,σ∗) = 0. (2.16)

(Note that the constraint equation at τ = 0, eq. (2.13), automatically yields ṫ′(0,σ∗) = 0

when eq. (2.16) is satisfied.)

The next step is to find specific IC that satisfy the constraint eq. (2.13) and obey the

boundary conditions eq. (2.16). We seek IC such that the string is long-lived, has most of

its energy and momentum concentrated near its endpoints, and produces stable numerical

solutions (some IC yield solutions for which numerical noise builds to uncontrolled fluctu-

ations along the string). Different IC correspond to different states in the dual field theory

on the boundary. IC with a complicated dependence on σ, including exponential terms,

have been studied in, e.g., [60]. One set of IC that satisfy our criteria are [55]

ẋ(0,σ) = Auc cosσ ,

u̇(0,σ) = uc
√
f(uc) (1− cos 2σ) , (2.17)

ṫ(0,σ) =
uc√
f(uc)

√
A2 cos2 σ + (1− cos 2σ)2 ,

where uc and A are free parameters that can be related to the energy and momentum of

the dual quark in the field theory (see below). The string starts as a zero-length point

– 6 –



New Jet Prescription based 
on separation of hard and 
soft sectors:	
  

Prescription of jet in AdS/CFT 

13

Jet Energy Lost 

Bragg peak J 

Energy Loss: 



Jet Nuclear Modification Factor 
 

RAA
jet ( pT )AdS /CFT ≡

Rmedium
jet ( pT )
RAdS5
jet ( pT )

We define a renormalized RAA  in AdS/CFT:	
  

R. Morad and W. A. Horowitz, 
 JHEP 11 (2014) 017  

14

∆Esub, ren(pi , L, T ) ≡  
∆Emedium(pi , L, T ) − ∆Evacuum(pi , L, T ) 



Light-Quark Dynamics 

15

Light quark dynamics highly 
depends on the initial conditions of  
the string. Further progress in 
describing experimental results will 
require significant advances in the 
understanding of string initial 
conditions.  
There is no known map between 
the string initial profiles and states 
in dual field theory. 
 

The only way, is calculating the energy-
momentum tensor of the string on the boundary 
and compare with the QCD results. 

That the results of our simple model are in such good agreement with data suggests that we 
attempt to better define the jet in AdS/CFT and constrain the possible string initial 
conditions.  



SYM Stress-Tensor 
 

16
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value of u, u = uc where we should specify the initial
condition needed to solve the equations of motion that
determine the shape of the rotating string. uc has a more
physical interpretation: it is the depth at which the local
velocity of the rotating string, !

0

R(uc), becomes equal
to the speed of light in the five-dimensional spacetime.
This has a simple interpretation from the point of view of
the string worldsheet. It can be verifed that the induced
metric on the string worldsheet gab has an event hori-
zon at u = uc. Thus disturbances on the string become
causally disconnected across uc. (This suggests that in
the boundary field theory the regime r � R(uc) = R

0

/v
can be thought of as the far field region, while r . R

0

/v
can be thought of as the near field region.) Even though
the AdS

5

spacetime with metric GMN has zero tempera-
ture, the worldsheet metric is that of a (1+1)-dimensional
Schwarzschild black hole whose horizon is at u = uc and
whose Hawking temperature is given by

T
ws

=
1

2⇡�uc
=

1

�
T

Unruh

(3.29)

where T
Unruh

= a
2⇡ is the Unruh temperature for an ac-

celerated particle with proper acceleration a. As it ra-
diates, the rotating test quark should experience small
kicks which would lead to Brownian motion in coordi-
nate space if the quark had finite mass. At strong cou-
pling such fluctuations can be found from small fluctua-
tions of the worldsheet fields XM (t, u) in the worldsheet
black hole geometry. The thermal nature of the world-
sheet metric indicates that such Brownian motion can be
described as if due to the presence of a thermal medium
with a temperature given by (3.29).

B. Gravitational perturbation set-up

In the limit N
c

! 1, the 5d gravitational constant
is parametrically small and consequently the presence of
the string acts as a small perturbation on the geometry.
To obtain leading order results in 1/N

c

we write the full
metric as

GMN = G(0)

MN + hMN , (3.30)

where G(0)

MN is the unperturbed metric (3.1), and lin-
earize the resulting Einstein equations in the perturba-
tion hMN . This results in the linearized equation of mo-
tion

� D2 hMN + 2DP D
(MhN)P � DMDN h + 8

L2 hMN

+
�
D2h � DP DQ hPQ � 4

L2 h
�
G(0)

MN = 22

5

tMN ,
(3.31)

where h ⌘ hM
M , DM is the covariant derivative under

the background metric (3.1), 2

5

is the 5d gravitational
constant and tMN is the 5d stress tensor of the string. In
N = 4 SYM theory, 2

5

= 4⇡2L3/N2

c , but this relation
would be di↵erent in other strongly coupled conformal
field theories with dual gravitational descriptions. We
shall see that 2

5

does not appear in any of our results.

According to the gauge/gravity dictionary, the on-shell
gravitational action

SG =
1

22

5

Z
d5x

p�G

✓
R +

12

L2

◆
+ SGH (3.32)

is the generating functional for the boundary stress ten-
sor [17, 18]. Here, G is the determinant of GMN , R is its
Ricci scalar, and SGH is the Gibbons-Hawking boundary
term [27], discussed and evaluated in the present context
in Ref. [25]. The 5d metric GMN induces a 4d metric gµ⌫

on the boundary of the the 5d geometry. The boundary
metric is related to the bulk metric by

gµ⌫(x) ⌘ lim
u!0

u2

L2

Gµ⌫(x, u) . (3.33)

Because GMN / 1/u2, the rescaling by u2 in (3.33) yields
a boundary metric that is regular at u = 0. The bound-
ary stress tensor is then given by [17]

Tµ⌫(x) =
2p�g

�S
G

�gµ⌫(x)
, (3.34)

with g denoting the determinant of gµ⌫ . We see that in
order to compute the boundary stress tensor, one needs
to find the string profile dual to the rotating quark and
compute its 5d stress tensor tMN . One then solves the
linearized Einstein equations (3.31) in the presence of
the string source and then extracts the boundary stress
tensor from the variation of the on-shell gravitational ac-
tion, as in (3.34). The 2

5

dependence drops out because
SG / 1/2

5

while we see from (3.31) that the perturbation
to the metric is proportional to 2

5

.

We determined the string profile in Section III.A. From
this, we may now compute the 5d string stress tensor,
which is what we need in order to determine the metric
perturbation due to the string. In general,

tMN = � T
0p�G

p�ggab@aXM@bX
N�3(r � rs) . (3.35)

For the rotating string given by (3.6) and (3.7) with
(3.17) and (3.19), this reduces to

Presence of string source with the following 
energy-momentum profile in the bulk perturb 
the metric: 
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Metric perturbation hMN : 
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the string worldsheet. It can be verifed that the induced
metric on the string worldsheet gab has an event hori-
zon at u = uc. Thus disturbances on the string become
causally disconnected across uc. (This suggests that in
the boundary field theory the regime r � R(uc) = R

0

/v
can be thought of as the far field region, while r . R

0

/v
can be thought of as the near field region.) Even though
the AdS

5

spacetime with metric GMN has zero tempera-
ture, the worldsheet metric is that of a (1+1)-dimensional
Schwarzschild black hole whose horizon is at u = uc and
whose Hawking temperature is given by

T
ws

=
1

2⇡�uc
=

1

�
T

Unruh

(3.29)

where T
Unruh

= a
2⇡ is the Unruh temperature for an ac-

celerated particle with proper acceleration a. As it ra-
diates, the rotating test quark should experience small
kicks which would lead to Brownian motion in coordi-
nate space if the quark had finite mass. At strong cou-
pling such fluctuations can be found from small fluctua-
tions of the worldsheet fields XM (t, u) in the worldsheet
black hole geometry. The thermal nature of the world-
sheet metric indicates that such Brownian motion can be
described as if due to the presence of a thermal medium
with a temperature given by (3.29).

B. Gravitational perturbation set-up

In the limit N
c

! 1, the 5d gravitational constant
is parametrically small and consequently the presence of
the string acts as a small perturbation on the geometry.
To obtain leading order results in 1/N

c

we write the full
metric as

GMN = G(0)

MN + hMN , (3.30)

where G(0)

MN is the unperturbed metric (3.1), and lin-
earize the resulting Einstein equations in the perturba-
tion hMN . This results in the linearized equation of mo-
tion

� D2 hMN + 2DP D
(MhN)P � DMDN h + 8

L2 hMN

+
�
D2h � DP DQ hPQ � 4

L2 h
�
G(0)

MN = 22

5

tMN ,
(3.31)

where h ⌘ hM
M , DM is the covariant derivative under

the background metric (3.1), 2

5

is the 5d gravitational
constant and tMN is the 5d stress tensor of the string. In
N = 4 SYM theory, 2

5

= 4⇡2L3/N2

c , but this relation
would be di↵erent in other strongly coupled conformal
field theories with dual gravitational descriptions. We
shall see that 2

5

does not appear in any of our results.

According to the gauge/gravity dictionary, the on-shell
gravitational action

SG =
1

22

5

Z
d5x

p�G

✓
R +

12

L2

◆
+ SGH (3.32)

is the generating functional for the boundary stress ten-
sor [17, 18]. Here, G is the determinant of GMN , R is its
Ricci scalar, and SGH is the Gibbons-Hawking boundary
term [27], discussed and evaluated in the present context
in Ref. [25]. The 5d metric GMN induces a 4d metric gµ⌫

on the boundary of the the 5d geometry. The boundary
metric is related to the bulk metric by

gµ⌫(x) ⌘ lim
u!0

u2

L2

Gµ⌫(x, u) . (3.33)

Because GMN / 1/u2, the rescaling by u2 in (3.33) yields
a boundary metric that is regular at u = 0. The bound-
ary stress tensor is then given by [17]

Tµ⌫(x) =
2p�g

�S
G

�gµ⌫(x)
, (3.34)

with g denoting the determinant of gµ⌫ . We see that in
order to compute the boundary stress tensor, one needs
to find the string profile dual to the rotating quark and
compute its 5d stress tensor tMN . One then solves the
linearized Einstein equations (3.31) in the presence of
the string source and then extracts the boundary stress
tensor from the variation of the on-shell gravitational ac-
tion, as in (3.34). The 2

5

dependence drops out because
SG / 1/2

5

while we see from (3.31) that the perturbation
to the metric is proportional to 2

5

.

We determined the string profile in Section III.A. From
this, we may now compute the 5d string stress tensor,
which is what we need in order to determine the metric
perturbation due to the string. In general,

tMN = � T
0p�G

p�ggab@aXM@bX
N�3(r � rs) . (3.35)

For the rotating string given by (3.6) and (3.7) with
(3.17) and (3.19), this reduces to

Linearized Einstein equation for hMN: 
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is parametrically small and consequently the presence of
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is the generating functional for the boundary stress ten-
sor [17, 18]. Here, G is the determinant of GMN , R is its
Ricci scalar, and SGH is the Gibbons-Hawking boundary
term [27], discussed and evaluated in the present context
in Ref. [25]. The 5d metric GMN induces a 4d metric gµ⌫
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Because GMN / 1/u2, the rescaling by u2 in (3.33) yields
a boundary metric that is regular at u = 0. The bound-
ary stress tensor is then given by [17]

Tµ⌫(x) =
2p�g

�S
G

�gµ⌫(x)
, (3.34)

with g denoting the determinant of gµ⌫ . We see that in
order to compute the boundary stress tensor, one needs
to find the string profile dual to the rotating quark and
compute its 5d stress tensor tMN . One then solves the
linearized Einstein equations (3.31) in the presence of
the string source and then extracts the boundary stress
tensor from the variation of the on-shell gravitational ac-
tion, as in (3.34). The 2

5

dependence drops out because
SG / 1/2

5

while we see from (3.31) that the perturbation
to the metric is proportional to 2
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.

We determined the string profile in Section III.A. From
this, we may now compute the 5d string stress tensor,
which is what we need in order to determine the metric
perturbation due to the string. In general,

tMN = � T
0p�G
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For the rotating string given by (3.6) and (3.7) with
(3.17) and (3.19), this reduces to

SYM energy-momentum tensor: 
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0
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to the speed of light in the five-dimensional spacetime.
This has a simple interpretation from the point of view of
the string worldsheet. It can be verifed that the induced
metric on the string worldsheet gab has an event hori-
zon at u = uc. Thus disturbances on the string become
causally disconnected across uc. (This suggests that in
the boundary field theory the regime r � R(uc) = R
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can be thought of as the far field region, while r . R

0
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can be thought of as the near field region.) Even though
the AdS
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where T
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= a
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celerated particle with proper acceleration a. As it ra-
diates, the rotating test quark should experience small
kicks which would lead to Brownian motion in coordi-
nate space if the quark had finite mass. At strong cou-
pling such fluctuations can be found from small fluctua-
tions of the worldsheet fields XM (t, u) in the worldsheet
black hole geometry. The thermal nature of the world-
sheet metric indicates that such Brownian motion can be
described as if due to the presence of a thermal medium
with a temperature given by (3.29).

B. Gravitational perturbation set-up

In the limit N
c

! 1, the 5d gravitational constant
is parametrically small and consequently the presence of
the string acts as a small perturbation on the geometry.
To obtain leading order results in 1/N

c

we write the full
metric as

GMN = G(0)

MN + hMN , (3.30)

where G(0)

MN is the unperturbed metric (3.1), and lin-
earize the resulting Einstein equations in the perturba-
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� D2 hMN + 2DP D
(MhN)P � DMDN h + 8

L2 hMN

+
�
D2h � DP DQ hPQ � 4

L2 h
�
G(0)

MN = 22

5

tMN ,
(3.31)
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5

is the 5d gravitational
constant and tMN is the 5d stress tensor of the string. In
N = 4 SYM theory, 2

5

= 4⇡2L3/N2

c , but this relation
would be di↵erent in other strongly coupled conformal
field theories with dual gravitational descriptions. We
shall see that 2

5

does not appear in any of our results.

According to the gauge/gravity dictionary, the on-shell
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22
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is the generating functional for the boundary stress ten-
sor [17, 18]. Here, G is the determinant of GMN , R is its
Ricci scalar, and SGH is the Gibbons-Hawking boundary
term [27], discussed and evaluated in the present context
in Ref. [25]. The 5d metric GMN induces a 4d metric gµ⌫

on the boundary of the the 5d geometry. The boundary
metric is related to the bulk metric by

gµ⌫(x) ⌘ lim
u!0

u2

L2

Gµ⌫(x, u) . (3.33)

Because GMN / 1/u2, the rescaling by u2 in (3.33) yields
a boundary metric that is regular at u = 0. The bound-
ary stress tensor is then given by [17]

Tµ⌫(x) =
2p�g

�S
G

�gµ⌫(x)
, (3.34)

with g denoting the determinant of gµ⌫ . We see that in
order to compute the boundary stress tensor, one needs
to find the string profile dual to the rotating quark and
compute its 5d stress tensor tMN . One then solves the
linearized Einstein equations (3.31) in the presence of
the string source and then extracts the boundary stress
tensor from the variation of the on-shell gravitational ac-
tion, as in (3.34). The 2

5

dependence drops out because
SG / 1/2

5

while we see from (3.31) that the perturbation
to the metric is proportional to 2

5

.

We determined the string profile in Section III.A. From
this, we may now compute the 5d string stress tensor,
which is what we need in order to determine the metric
perturbation due to the string. In general,

tMN = � T
0p�G

p�ggab@aXM@bX
N�3(r � rs) . (3.35)

For the rotating string given by (3.6) and (3.7) with
(3.17) and (3.19), this reduces to

On-shell gravitational action: 

hMN has 15 degrees of freedom                        Tµν has 5 degrees of freedom 
 ?
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It is possible to construct gauge invariant quantities out of linear combinations of hMN and its 
derivatives.	
  
	
  

✓ There are just 5 of them.   
✓  Their equation of motions are completely decoupled. 
 
The gauge invariant which is transformed as scalar under rotation Z, can give us the energy 
density of the SYM stress tensor on the boundary: 

12

The dynamics of Z are governed by the linearized
Einstein equations (3.31). Using the linearized Einstein
equations, it is straightforward but tedious to show that
Z satisfies the equation of motion

Z 00 + AZ 0 + BZ = S , (3.39)

where

A ⌘ �24 + 4q2u2 + 6f + q2u2f � 30f2

uf (u2q2 + 6 � 6f)
, (3.40)

B ⌘ !2

f2

+
q2u2(14�5f�q2u2) + 18(4�f�3f2)

u2f (q2u2 + 6 � 6f)
, (3.41)

S

2

5

⌘ 8

f
t0
00

+
4
�
q2u2+6�6f

�

3uq2f
(q2�ij�3qiqj)tij (3.42)

+
8i!

f
t
05

+
8u

⇥
q2

�
q2u2+6

� � f
�
12q2�9f 00�⇤

3f2 (q2u2 � 6f + 6)
t
00

� 8q2u

3
t
55

� 8iqiti5 .

The connection between Z and the energy density may
be found by considering the behavior of Z and HMN

near the boundary. Choosing for convenience the gauge
H

5M = 0, one can solve the linearized Einstein equations
(3.31) with a power series expansion about u = 0 in order
to ascertain the asymptotic behavior of the metric per-
turbation. Setting the boundary value of Hµ⌫ to vanish
so the boundary geometry is flat and considering sources
tMN corresponding to strings ending at u = 0, one finds
an expansion of the form [25, 29]

Hµ⌫(u) = H(3)

µ⌫ u3 + H(4)

µ⌫ u4 + · · · . (3.43)

In the gauge H
5M = 0 the variation of the gravitational

action (3.34) relates the asymptotic behavior of Hµ⌫ to
the perturbation in the boundary energy density via [17]

E =
2L3

2

5

H(4)

00

. (3.44)

The coe�cient H(4)

00

can in turn be related to the asymp-
totic behavior of Z by substituting the expansion (3.43)
into Eq. (3.38). In doing so one finds that Z has the
asymptotic form

Z(u) = Z
(2)

u2 + Z
(3)

u3 + · · · , (3.45)

and that

H(4)

00

= � 1

16
Z

(3)

. (3.46)

We therefore see that the energy density is given by

E = � L3

82

5

Z
(3)

. (3.47)

The coe�cient Z
(2)

in the expansion (3.45), which has
delta function support at the location of the quark, gives

the divergent stress of the infinitely massive test quark.
It is therefore not of interest to us. We now see explicitly
that, as we argued above, in order to obtain the energy
density in the boundary quantum field theory the only
aspect of the metric perturbation that we need to com-
pute is Z, and furthermore that all we need to know are
the coe�cients in the expansion of Z about u = 0.

D. The solution to the bulk to boundary problem
and the boundary energy density

Although we have defined Z at nonzero temperature,
henceforth as we determine Z we return to T = 0, mean-
ing f = 1. At zero temperature the coe�cients A and B
appearing in (3.39) are given by

A = � 5

u
, (3.48)

B = !2 � q2 +
9

u2

. (3.49)

and the general solution to (3.39) may be written

Z(u) = � u3I
0

(uQ)

Z 1

u

du0 K0

(u0Q)

u02 S(u0) + ↵

�

� u3K
0

(uQ) lim
✏!0

Z u

✏

du0 I0

(u0Q)

u02 S(u0) + �

�
,

(3.50)

where Q ⌘
p

q2 � !2, I
0

and K
0

are modified Bessel
functions, and ↵ and � are constants of integration.

The constants of integration are fixed by requiring that
Z(u) satisfy appropriate boundary conditions. As I

0

(uQ)
diverges as u ! 1, regularity at u = 1 requires ↵ = 0.
The constant � is fixed by the requirement that the ✏ ! 0
limit exists (so all points on the string contribute to
the induced gravitational disturbance) and that no log-
arithms appear in the expansion of Z(u) near u = 0.
This last condition is equivalent to the boundary condi-
tion that the metric perturbation HMN vanish at u = 0
so the boundary geometry is flat and unperturbed. For
strings which end at u = 0, we have

S(u) = s
0

+ O(u2) , (3.51)

where

s
0

= 82

5

lim
u!0

u2@u

✓
t
00

u2

◆
= �82

5

lim
u!0

t
00

u
, (3.52)

where we have used the fact that t
00

/ u at small u.
Furthermore, the Bessel functions have the asymptotic
expansions

I
0

(uQ) = 1 + O(u2) , (3.53)

K
0

(uQ) = ��
E

� log( 1

2

uQ) + O(u2) , (3.54)
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The connection between Z and the energy density may
be found by considering the behavior of Z and HMN

near the boundary. Choosing for convenience the gauge
H

5M = 0, one can solve the linearized Einstein equations
(3.31) with a power series expansion about u = 0 in order
to ascertain the asymptotic behavior of the metric per-
turbation. Setting the boundary value of Hµ⌫ to vanish
so the boundary geometry is flat and considering sources
tMN corresponding to strings ending at u = 0, one finds
an expansion of the form [25, 29]
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that, as we argued above, in order to obtain the energy
density in the boundary quantum field theory the only
aspect of the metric perturbation that we need to com-
pute is Z, and furthermore that all we need to know are
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Asymptotic behavior of Z:	
  

Energy density:	
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The connection between Z and the energy density may
be found by considering the behavior of Z and HMN

near the boundary. Choosing for convenience the gauge
H

5M = 0, one can solve the linearized Einstein equations
(3.31) with a power series expansion about u = 0 in order
to ascertain the asymptotic behavior of the metric per-
turbation. Setting the boundary value of Hµ⌫ to vanish
so the boundary geometry is flat and considering sources
tMN corresponding to strings ending at u = 0, one finds
an expansion of the form [25, 29]

Hµ⌫(u) = H(3)

µ⌫ u3 + H(4)

µ⌫ u4 + · · · . (3.43)

In the gauge H
5M = 0 the variation of the gravitational

action (3.34) relates the asymptotic behavior of Hµ⌫ to
the perturbation in the boundary energy density via [17]

E =
2L3

2

5

H(4)

00

. (3.44)

The coe�cient H(4)

00

can in turn be related to the asymp-
totic behavior of Z by substituting the expansion (3.43)
into Eq. (3.38). In doing so one finds that Z has the
asymptotic form

Z(u) = Z
(2)

u2 + Z
(3)

u3 + · · · , (3.45)

and that

H(4)

00

= � 1

16
Z

(3)

. (3.46)

We therefore see that the energy density is given by

E = � L3

82

5

Z
(3)

. (3.47)

The coe�cient Z
(2)

in the expansion (3.45), which has
delta function support at the location of the quark, gives

the divergent stress of the infinitely massive test quark.
It is therefore not of interest to us. We now see explicitly
that, as we argued above, in order to obtain the energy
density in the boundary quantum field theory the only
aspect of the metric perturbation that we need to com-
pute is Z, and furthermore that all we need to know are
the coe�cients in the expansion of Z about u = 0.

D. The solution to the bulk to boundary problem
and the boundary energy density

Although we have defined Z at nonzero temperature,
henceforth as we determine Z we return to T = 0, mean-
ing f = 1. At zero temperature the coe�cients A and B
appearing in (3.39) are given by

A = � 5

u
, (3.48)

B = !2 � q2 +
9

u2

. (3.49)

and the general solution to (3.39) may be written

Z(u) = � u3I
0

(uQ)

Z 1

u

du0 K0

(u0Q)

u02 S(u0) + ↵

�

� u3K
0

(uQ) lim
✏!0

Z u

✏

du0 I0

(u0Q)

u02 S(u0) + �

�
,

(3.50)

where Q ⌘
p

q2 � !2, I
0

and K
0

are modified Bessel
functions, and ↵ and � are constants of integration.

The constants of integration are fixed by requiring that
Z(u) satisfy appropriate boundary conditions. As I

0

(uQ)
diverges as u ! 1, regularity at u = 1 requires ↵ = 0.
The constant � is fixed by the requirement that the ✏ ! 0
limit exists (so all points on the string contribute to
the induced gravitational disturbance) and that no log-
arithms appear in the expansion of Z(u) near u = 0.
This last condition is equivalent to the boundary condi-
tion that the metric perturbation HMN vanish at u = 0
so the boundary geometry is flat and unperturbed. For
strings which end at u = 0, we have

S(u) = s
0

+ O(u2) , (3.51)

where

s
0

= 82

5

lim
u!0

u2@u

✓
t
00

u2

◆
= �82

5

lim
u!0

t
00

u
, (3.52)

where we have used the fact that t
00

/ u at small u.
Furthermore, the Bessel functions have the asymptotic
expansions

I
0

(uQ) = 1 + O(u2) , (3.53)

K
0

(uQ) = ��
E

� log( 1

2

uQ) + O(u2) , (3.54)P. Chesler et al, hep-th/1001.3880 



Boundary Energy Density in AdS5 

18

Energy Density on the boundary of AdS5 sourced by a massless particle

Razieh Morad

Abstract

I review the energy density on the boundary of AdS5 sourced by a point particle inside

the bulk that falls through a null geodesic.

Contents

1 Energy density on the boundary 1

2 Point particle inside the bulk 2

2.1 Considering Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Going back in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Energy density on the boundary

The energy density on the boundary at a space-time point at (t
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1
At time t, the bulk excitation localized at (t, r) emits a gravitational wave δGMN 
which  propagates  through  AdS5  at  the  respective  speed  of  light  up  to  the 
measurement point (tb, xb, x⊥b) on the boundary. 

The δ function in the integrand represents the support of the retarded bulk- to-
boundary propagator for the Einstein equations in AdS5. Its argument follows 
from causality together with the condition of propagation at the 5D speed of 
light, for both the bulk excitations and the gravitational waves. 



Boundary Energy Density 

19

Heavy quark at rest with 
finite mass in AdS5

Heavy quark with finite mass and 
velocity v=0.9 in x direction in AdS5
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� String 1 created at uc=0.1 : 
                              Eq=100 GeV,  Q2=176 GeV2 

String 2 created at uc=0.01 :  
                               Eq=100 GeV,  Q2=6000 GeV2 

One can define the opening angle of jet:   
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Jet Nuclear Modification Factor 
 

RAA
jet ( pT ) ≡

dNAA→ jet

dpT
( pT )

Ncoll
dN pp→ jet

dpT
( pT )

=

Ncoll
dε
1−ε

dN pp→ jet

dpT
(
p
T

f

1−ε
) P(ε | p

T

i )∫

Ncoll
dN pp→ jet

dpT
( pT )

power low production spectrum: 	
  

pT
f = (1−ε) pT

i
pT

f            Final energy of jet  
pT

i           Initial energy of quark                    ;	
  

ε     Fractional energy loss 
 
    Probability of fractional energy loss  
     of jet with initial momentum pT

i    	
  
P(ε | p

T

i )

( )( )
T

pp jet
T n p

T T

dN Ap
dp p

→ =

26

J
H
E
P
1
1
(
2
0
1
4
)
0
1
7

Figure 8. (Color online) Jet RAA as a function of pT for a simple suppression model in the
most central Pb-Pb collisions obtained via AdS/CFT strong-coupling energy loss in three different
backgrounds. Red, blue, and purple curves show Rjet

AA for the falling string in the empty AdS5,
time-dependent JP and static AdS-Sch metrics, respectively.

where the angular brackets again denote a geometric average.

For a uniform 1D nucleus, the geometric average is an integral over a line of production

points with a parton that propagates through the line. In this case, RR→jet
AA (pT ) is [69]

RR→jet
AA (pT ) =

∫ Lmax

0

dl

Lmax

(
1− ϵR(pT , l, T )

)nR(pT )−1
. (3.9)

In figure 8 we plot Rjet
AA in a strongly-coupled plasma by using the ∆u jet energy loss

prescription in the AdS-Sch and the JP metrics. The static plasma has a temperature

of 350MeV, and the time-dependent plasma has an initial temperature of 350MeV at

tc = 0.6 fm. Leading order pQCD gives the production spectrum here for the initial hard

quarks and gluons at LHC,
√
s = 2.76TeV [20]. We use the most simple toy model for

the geometry of the nucleus, taking it to be a 1D object of uniform density of total length

Lmax = 14 fm. As can be seen in figure 8, the AdS/CFT RAA(pT ) prediction for central

collisions at LHC from this very simple model — both from the static plasma AdS-Sch

and from the time-dependent JP metric — are significantly oversuppressed compared to

the recent preliminary CMS data, which show Rjet
AA ∼ 0.5 [46].

The point-like initial condition falling string that we consider here is dual to the cre-

ation of a quark-antiquark pair that flies apart in the strongly coupled plasma, interacting

with and losing energy to the plasma. By definition, jets produced in pp collisions do not

lose any energy; they propagate in vacuum. Despite this required expectation, one can see

from figure 8 that, in using our ∆u prescription, our jets lose a significant fraction of their

energy as they are produced in and propagate through a vacuum “plasma” of the same
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