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Cardy formulas in 2d and 4d

I Cardy formulas in 2d CFT:

i) ZS1(β) ∼ e
c
β Cardy X

ii) χ(β) ∼ e
c
β (2, 2) SUSY X

I Cardy(-like) formulas in 4d CFT:

i) ZS3(β) ∼ e
?

β3 No universal formula x

ii) I(β) ∼ e
(c−a)

β N = 1 SUSY ?
(Di Pietro-Komargodski ’14)



Papers on the 4d Cardy formula

I 3d dualities from 4d dualities (Aharony et al ’13)

I c − a from the N = 1 superconformal index (AAA, Liu,

Szepietowski ’14)

I Cardy Formulae for SUSY Theories in d=4 and d=6 (Di Pietro and

Komargoski ’14)

I High-temperature asymptotics of supersymmetric partition functions

(AAA ’15)

I High-Temperature Asymptotics of the 4d Superconformal Index

(AAA ’16)



Context: 4d Lagrangian SuperConformalFieldTheory
(SCFT)

A quantum theory of 4d gauge and matter fields (grouped into
vector and chiral multiplets).

Supersymmetry means there exists a fermionic “supercharge”
operator Q acting on the Hilbert space of the theory, such that

{Q,Q†} = H, Q2 = 0.

Note: Q pairs the states it doesn’t annihilate!

Conformal symmetry implies an additional U(1)R symmetry.

The local operators of such a Quantum Field Theory are charged
under the maximal compact bosonic subgroup of the
superconformal group:

∆, j1, j2, r



Motivation

I Holography: Cardy limit of CFT2 encodes Blackhole physics;
Cardy limit of CFT4 seems to encode giant gravitons.

I Gauge dynamics: Cardy limit of CFT4 seems to encode the
crossed channel gauge dynamics on R3 × S1.



What is the 4d superconformal index? (1/2)

It is a combinatorial partition function that counts certain
gauge-invariant local operators in 4d SCFTs.

I(β) ≡
∑

gauge inv. ops.

(−1)F e−β(∆− r
2

)

=
∑

BPS operators

(−1)F e−β(∆− r
2

)

The index receives contributions from the supersymmetric
(protected) operators only: the sum localizes over BPS operators.

It often depends on β (inverse temperature ∈]0,∞[) in a
complicated manner.



What is the 4d superconformal index? (2/2)

The index of a theory with a semi-simple gauge group G can be
computed via certain well-understood combinatorial procedures
(plethystic exponentiation, and projecting onto the gauge singlet
sector).

The end result is an Elliptic Hypergeometric Integral
(Dolan and Osborn ’08):

I(β) =
(q; q)2rG

|W |

∫
drG x

∏
χ

∏
ρχ∈∆χ

Γe(qrχzρ
χ

)∏
α+

Γe(z±α+)
,

with q = e−β, z = e2πix . The integral is over −1
2 ≤ xj ≤ 1

2 ; the xj

parameterize the gauge group (j = 1, . . . , rG ).

The index could have been obtained (Assel, Cassani, Martelli) via
path-integration on S3 × S1

β . The path-integral localizes on the

moduli space of the holonomies around S1
β—or essentially the

Polyakov loops!
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What’s there in the high-temperature limit? (1/5)

The index is given by an Elliptic Hypergeometric Integral:

I(β) =

∫
drG x F (x;β).

The high-temperature (β → 0) limit corresponds to the
hyperbolic limit of the Elliptic Hypergeometric Integral.

The machinery for analyzing the hyperbolic limit of EHIs is
developed in Limits of Elliptic Hypergeometric Integrals (Rains
’06).

Expectation: (AAA, JT Liu, and P Szepietowski ’14, ’15;

Di Pietro-Komargodski ’14)

I(β) ≈ e
A
β

+B lnβ+C+Dβ+...



What’s there in the high-temperature limit? (2/5)

Following Rains’ approach we find that the index (of theories with
non-chiral matter content) simplifies at high temperatures as

I(β) =

∫
hcl

F (x;β)
β→0−→

∫
hcl

exp
[
−
(
EDK

0 (β) + V eff(x;β)
)]
,

where hcl stands for −1
2 ≤ xi ≤ 1

2 , while

EDK
0 (β) = −16π2

3β
(c − a)

and

V eff =
4π2

β
Lh(x)

The star of our show, the function Lh(x), is real, continuous, and
piecewise linear. Also Lh(0) = 0.



What’s there in the high-temperature limit? (3/5)

We can write

I(β) ≈
∫

hqu

e−[EDK
0 (β)+V eff(x;β)] ≈ e−[EDK

0 (β)+V eff
min(β)],

with hqu the locus of minima of Lh(x), and V eff
min(β) the minimum

of V eff(x;β).

The end result looks like

ln I(β) =
16π2

3β
(c − a− 3

4
Lh min) + dimhqu ln(

2π

β
) + O(β0).

The Di Pietro-Komargodski formula receives a correction if Lh(x)
is not positive semi-definite.
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What’s there in the high-temperature limit? (4/5)

ln I(β) =
16π2

3β
(c − a− 3

4
Lh min) + dimhqu ln(

2π

β
) + O(β0).

For example, for the N = 4 theory we have Lh(x) = 0. Therefore
dimhqu = dimhcl = rG . Since for this theory c − a = 0, we get

ln IN=4(β) = rG ln(
2π

β
) + O(β0).



What’s there in the high-temperature limit? (5/5)

More
examples:

SU(3) SQCD fixed points

SO(5) SQCD fixed points

The ISS SCFT (has c < a)



The 4d superconformal index has a Cardy-like asymptotics, unless
the theory exhibits an asymptotic Higgs mechanism!

Thanks for your attention!



Taking the large-N limit first

A field theory computation shows

I(β)
N→∞−→ Im.t.(β)

Hence the holographic computation of the large-N index involves
only Kaluza-Klein particles.

It turns out that a simple differential operator acting on the
large-N index gives the bulk loop correction to the Weyl anomaly
of the SCFT.

It can be checked, in a large class of holographic SCFTs, that the
operator acting on the index does indeed produce the boundary
subleading central charges. This addresses the Holographic Weyl
Anomaly problem quite generally, validating AdS/CFT beyond the
leading order in large-N, and in infinitely many cases.



Thanks for your attention!


