

On the Shape of things From holography to elastica

Álvaro Véliz-Osorio (Jagiellonian University) Tehran May 2017

Based on 1611.03462 with:

Piermarco Fonda (Leiden)

Vishnu Jejjala (Wits)

...and work in progress

3

(日)、

General question

Which shape a manifold is compelled to take when immersed in another one, provided it must extremize some functional?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

General question

Which shape a manifold is compelled to take when immersed in another one, provided it must extremize some functional?

This question has been around for a while $\sim 2000 \ {\rm years}$

Devenere locos, ubi nunc ingentia cernis moenia surgentemque novae Karthaginis arcem, mercatique solum, facti de nomine Byrsam, taurino quantum possent circumdare tergo. Virgilio, Aeneid, Bk. I

General question

Which shape a manifold is compelled to take when immersed in another one, provided it must extremize some functional?

This question has been around for a while $\sim 2000 \ {\rm years}$

Devenere locos, ubi nunc ingentia cernis moenia surgentemque novae Karthaginis arcem, mercatique solum, facti de nomine Byrsam, taurino quantum possent circumdare tergo. Virgilio, Aeneid, Bk. I

Did Virgilio forsee Ryu-Takayanagi?!?!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometric setup

Immersion $f: N \rightarrow (M, g)$

$$\Sigma = \{x^{\mu}(\sigma_i) | i = 1, \dots, p\}$$

Indices:

Ambient μ , $\nu = 1, \dots, d$ Tangent *i*, $j = 1, \dots, p$ Normal A, $B = 1, \dots, (d - p)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Geometric setup

Immersion $f: N \to (M, g)$

$$\Sigma = \{x^{\mu}(\sigma_i) | i = 1, \dots, p\}$$

Indices:

Ambient μ , $\nu = 1, \dots, d$ Tangent *i*, $j = 1, \dots, p$ Normal *A*, $B = 1, \dots, (d - p)$

Induced metric

$$h_{ij} = g_{\mu
u} t^{\mu}_i t^{
u}_j$$

We can associate $\tilde{\nabla}_i$, \mathcal{R}_{ijkl} , \mathcal{R} , ...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Geometric setup

Immersion $f: N \rightarrow (M, g)$

$$\Sigma = \{x^{\mu}(\sigma_i) | i = 1, \dots, p\}$$

Indices:

Ambient μ , $\nu = 1, \dots, d$ Tangent *i*, $j = 1, \dots, p$ Normal A, $B = 1, \dots, (d - p)$

Projecting ambient tensors, example

$$R^{A}_{jik} = R_{\mu\nu\rho\sigma} n^{A\mu} t^{\nu}_{j} t^{\rho}_{j} t^{\sigma}_{j}$$

Extrinsic geometry

As one moves along Σ , how do normal vectors change?

$$t_i^{\nu} \nabla_{\nu} n^{\mu A} = K_{ij}^A t^{\mu j} - T_i^{AB} n_B^{\mu} ,$$

Extrinsic curvatures $K_{ii}^A = t_i^\mu t_i^\nu \nabla_\mu n_\nu^A$

 $T_i^{AB} = t_i^{\mu} n^{\nu A} \nabla_{\mu} n_{\nu}^{B}$ Extrinsic torsions

Gauss relation

$$\mathcal{R}_{jkil} = R_{jkil} + K^{A}_{[ij}K^{B}_{kl}\eta_{AB}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extrinsic geometry

As one moves along Σ , how do normal vectors change?

$$t_i^{\nu} \nabla_{\nu} n^{\mu A} = K_{ij}^A t^{\mu j} - T_i^{AB} n_B^{\mu} ,$$

Extrinsic curvatures

Extrinsic torsions

$$\begin{aligned} \mathcal{K}_{ij}^{A} &= t_{i}^{\mu} t_{j}^{\nu} \nabla_{\mu} n_{\nu}^{A} \\ \mathcal{T}_{i}^{AB} &= t_{i}^{\mu} n^{\nu A} \nabla_{\mu} n_{\nu}^{B} \end{aligned}$$

Gauss relation

$$\mathcal{R}_{jkil} = \mathcal{R}_{jkil} + \mathcal{K}^{\mathcal{A}}_{[ij}\mathcal{K}^{\mathcal{B}}_{kl]}\eta_{\mathcal{AB}}$$

Contracted

$$\mathcal{R} = R - 2R_{A}^{A} + R_{AB}^{AB} + \mathrm{Tr}\mathcal{K}_{A}\mathrm{Tr}\mathcal{K}^{A} - \mathrm{Tr}(\mathcal{K}_{A}\mathcal{K}^{A})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Extrinsic geometry

As one moves along Σ , how do normal vectors change?

$$t_i^{\nu} \nabla_{\nu} n^{\mu A} = K_{ij}^A t^{\mu j} - T_i^{AB} n_B^{\mu} ,$$

Extrinsic curvatures

Extrinsic torsions

$$K_{ij}^{A} = t_{i}^{\mu} t_{j}^{\nu} \nabla_{\mu} n_{\nu}^{A}$$
$$T_{i}^{AB} = t_{i}^{\mu} n^{\nu A} \nabla_{\mu} n_{\nu}^{B}$$

Gauss relation

$$\mathcal{R}_{jkil} = R_{jkil} + K^A_{[ij}K^B_{kl]}\eta_{AB}$$

Contracted

$$\mathcal{R} = R - 2R_{A}^{A} + R_{AB}^{AB} + \mathrm{Tr}\mathcal{K}_{A}\mathrm{Tr}\mathcal{K}^{A} - \mathrm{Tr}(\mathcal{K}_{A}\mathcal{K}^{A})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contains the *Theorema egregium* $\mathcal{R} = 2 \det K_i^j$

Gauge theory and the normal frame

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Gauge theory and normal bundle

Under gauge transformations, $n^B_\mu
ightarrow \mathcal{M}^A_B n^B_\mu$

$$\mathcal{K}^{\mathcal{A}}_{ij} \to \mathcal{M}^{\mathcal{A}}_{\mathcal{B}} \mathcal{K}^{\mathcal{B}}_{ij} \qquad \mathcal{T}^{\mathcal{A}\mathcal{B}}_{i} \to \mathcal{M}^{\mathcal{C}}_{\mathcal{A}} \mathcal{M}^{\mathcal{D}}_{\mathcal{B}} \ \mathcal{T}^{\mathcal{A}\mathcal{B}}_{i} + \eta^{\mathcal{A}\mathcal{B}} \mathcal{M}^{\mathcal{C}}_{\mathcal{A}} \partial_{i} \mathcal{M}^{\mathcal{D}}_{\mathcal{B}}$$

 T_i^{AB} transform as connections

Introduce a covariant derivative

$$\tilde{D}_{i\ B}^{A}V_{j\ldots}^{B}\equiv\tilde{\nabla}_{i}V_{j\ldots}^{B}+T_{i}^{AB}\eta_{BC}V_{j\ldots}^{C}$$

Gauge theory technology can be imported Interesting to combine with geometric identities, Ex:

$$F_{ij}^{AB} = K^A_{[ik}K^B_{j]l}h^{kl} - R^{AB}_{ij}$$

A simple and beautiful example

A surface in a three dimensional manifold

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \ \sqrt{h} \ 1 = \lambda_0 \operatorname{Area}[\Sigma] \ .$$

Moving away in a normal direction

$$\mathcal{L}_n h_{ij} = 2\varepsilon K_{ij}$$
,

The first shape equation

$$\mathrm{Tr}K_{ij}=0$$

When minimising its area a surface makes each of its point a saddle whose directions have the exact opposite curvature.

A beautiful fact indeed!!

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \ \sqrt{h} \ 1 = \lambda_0 \operatorname{Area}[\Sigma] \ .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \ \sqrt{h} \ 1 = \lambda_0 \operatorname{Area}[\Sigma] \ .$$

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Contributions at second order

 $\lambda_{1}\mathcal{R} + \lambda_{2}\mathcal{R} + \lambda_{3}\mathcal{R}_{A}^{A} + \lambda_{4}\mathcal{R}_{AB}^{AB} + \lambda_{5}\mathrm{Tr}\mathcal{K}_{A}\mathrm{Tr}\mathcal{K}^{A} + \lambda_{6}\mathrm{Tr}\mathcal{K}^{A}\mathcal{K}_{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \ \sqrt{h} \ 1 = \lambda_0 \operatorname{Area}[\Sigma] \ .$$

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Contributions at second order

 $\lambda_{1}\mathcal{R} + \lambda_{2}\mathcal{R} + \lambda_{3}\mathcal{R}_{A}^{\ A} + \lambda_{4}\mathcal{R}_{AB}^{\ AB} + \lambda_{5}\mathrm{Tr}\mathcal{K}_{A}\mathrm{Tr}\mathcal{K}^{A} + \lambda_{6}\mathrm{Tr}\mathcal{K}^{A}\mathcal{K}_{A}$

They aren't all independent, since

 $\mathcal{R} = R - 2R_A^A + R_{AB}^{AB} + \mathrm{Tr} K_A \mathrm{Tr} K^A - \mathrm{Tr} (K_A K^A)$

Generalizations of the area functional

$$S_0[\Sigma] = \lambda_0 \int_{\Sigma} d^p \sigma \ \sqrt{h} \ 1 = \lambda_0 \operatorname{Area}[\Sigma] \ .$$

Ex: Willmore functional, Canham-Helfrich, Dong functional, ...

Contributions at second order

$$\lambda_{1}\mathcal{R} + \lambda_{2}\mathcal{R} + \lambda_{3}\mathcal{R}_{A}^{A} + \lambda_{4}\mathcal{R}_{AB}^{AB} + \lambda_{5}\mathrm{Tr}\mathcal{K}_{A}\mathrm{Tr}\mathcal{K}^{A} + \lambda_{6}\mathrm{Tr}\mathcal{K}^{A}\mathcal{K}_{A}$$

Mission: find the extrema of this functional

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Topological terms

For a curve in three dimensions

$$\tau = \frac{1}{2} \epsilon_{AB} T^{AB}$$

For a surface in four dimensions

$$\varphi = \frac{1}{4} \epsilon_{AB} \epsilon^{ij} F^{AB}_{ij}$$

Three-dimensional submanifolds

$$\Phi = \epsilon^{ijk} \eta_{AC} \left(F^A_{ijB} T^{BC}_k - \frac{1}{3} T^A_{iB} T^B_{jD} T^{DC}_k \right)$$

Important when studying EE for TMG or CS-gravity

Castro, Detournay, Iqbal, Perlmutter '14 Azeyanagi, Logayagam, Ng '15 Ali, Haque, Murugan '16

Topological terms

For a curve in three dimensions

$$\tau = \frac{1}{2} \epsilon_{AB} T^{AB}$$

For a surface in four dimensions

$$\varphi = \frac{1}{4} \epsilon_{AB} \epsilon^{ij} F^{AB}_{ij}$$

Three-dimensional submanifolds

$$\Phi = \epsilon^{ijk} \eta_{AC} \left(F^A_{ijB} T^{BC}_k - \frac{1}{3} T^A_{iB} T^B_{jD} T^{DC}_k \right)$$

Important when studying EE for TMG or CS-gravity

Castro, Detournay, Iqbal, Perlmutter '14 Azeyanagi, Logayagam, Ng '15 Ali, Haque, Murugan '16

Shape equations

Complicated, yet they are completely expressed in terms of geometrical objects.

Simons, Yau, Yano, Chen, Carter, Guven, Capovilla, ...

Many interesting physical applications

Canham, Helfrich, Zhon-Chan, Boisseau-Letelier, Armas, ...

Some of interesting cases:

• Minimal submanifolds $\lambda_0 \neq 0$

$$\operatorname{Tr} K^A = 0$$

• Generalized Willmore $\lambda_5 \neq 0$

 $\mathrm{Tr}\mathcal{K}_{\mathcal{B}}\left[\mathrm{Tr}\mathcal{K}^{\mathcal{A}}\mathrm{Tr}\mathcal{K}^{\mathcal{B}}-2\mathrm{Tr}\left(\mathcal{K}^{\mathcal{B}}\mathcal{K}^{\mathcal{A}}\right)-2\mathcal{R}_{i}^{\mathcal{B}}{}_{i}^{\mathcal{A}i}\right]-2\tilde{D}_{i}{}_{\mathcal{C}}^{\mathcal{B}}\tilde{D}^{i\mathcal{C}\mathcal{A}}\mathrm{Tr}\mathcal{K}_{\mathcal{B}}=0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Shape equations

Complicated, yet they are completely expressed in terms of geometrical objects.

Simons, Yau, Yano, Chen, Carter, Guven, Capovilla, ...

Many interesting physical applications

Canham, Helfrich, Zhon-Chan, Boisseau-Letelier, Armas, ...

Some of interesting cases:

• Minimal submanifolds $\lambda_0 \neq 0$

$$\operatorname{Tr} K^A = 0$$

• Generalized Willmore $\lambda_5 \neq 0$

 $\mathrm{Tr}\mathcal{K}_{B}\left[\mathrm{Tr}\mathcal{K}^{A}\mathrm{Tr}\mathcal{K}^{B}-2\mathrm{Tr}\left(\mathcal{K}^{B}\mathcal{K}^{A}\right)-2\mathcal{R}_{i}^{B}{}^{Ai}\right]-2\tilde{D}_{i}{}^{B}{}_{C}\tilde{D}^{iCA}\mathrm{Tr}\mathcal{K}_{B}=0$

...in their full glory

Shape equations

For arbitrary dimension and codimension, the extrema of the second order functional obey

$$\mathcal{E}^{A} = \lambda_{0} \mathrm{Tr} \mathcal{K}^{A} + \sum_{n=1}^{6} \lambda_{n} \mathcal{E}^{A}_{n} = 0$$

with

$$\begin{split} \mathcal{E}_{1}^{A} &= \operatorname{Tr} \mathcal{K}^{A} \mathcal{R} - 2 \mathcal{R}^{ij} \mathcal{K}_{ij}^{A}, \\ \mathcal{E}_{2}^{A} &= \operatorname{Tr} \mathcal{K}^{A} \mathcal{R} + n_{\mu}^{A} \nabla^{\mu} \mathcal{R}, \\ \mathcal{E}_{3}^{A} &= \operatorname{Tr} \mathcal{K}^{A} \mathcal{R}_{B}^{\ B} + 2 \tilde{D}_{k}^{\ BA} \mathcal{R}_{B}^{k} + n_{C}^{\mu} n^{C\nu} n^{A\delta} \nabla_{\delta} \mathcal{R}_{\mu\nu}, \\ \mathcal{E}_{4}^{A} &= \operatorname{Tr} \mathcal{K}^{A} \mathcal{R}_{CB}^{\ CB} + 4 \tilde{D}_{k}^{\ BA} \mathcal{R}_{BC}^{kC} + n_{C}^{\mu} n_{B}^{\nu} n^{C\rho} n^{B\sigma} n^{A\delta} \nabla_{\delta} \mathcal{R}_{\mu\nu\rho\sigma}, \\ \mathcal{E}_{5}^{A} &= \operatorname{Tr} \mathcal{K}_{B} \left[\operatorname{Tr} \mathcal{K}^{A} \operatorname{Tr} \mathcal{K}^{B} - 2 \operatorname{Tr} \left(\mathcal{K}^{B} \mathcal{K}^{A} \right) - 2 \mathcal{R}_{i}^{B} \mathcal{A}^{i} \right] - 2 \tilde{D}_{i}^{\ B} \mathcal{L}_{O}^{DiCA} \operatorname{Tr} \mathcal{K}_{B}, \\ \mathcal{E}_{6}^{A} &= \operatorname{Tr} \mathcal{K}^{A} \operatorname{Tr} \left(\mathcal{K}_{B} \mathcal{K}^{B} \right) - 2 \left[\tilde{D}_{i}^{\ C} \mathcal{D}_{j}^{\ BA} \mathcal{K}_{C}^{ij} + \operatorname{Tr} \left(\mathcal{K}^{B} \mathcal{K}_{B} \mathcal{K}^{A} \right) + \mathcal{K}_{B}^{ij} \mathcal{R}_{i}^{B} \mathcal{A}_{i}^{i} \right], \end{split}$$

Shape equations in maximally symmetric spaces

Suppose that the ambient has

$$R_{\mu
u
ho\sigma} = rac{R}{d(d-1)} \left(g_{\mu
ho} g_{
u\sigma} - g_{\mu\sigma} g_{
u
ho}
ight) \qquad R = {
m const}$$

with

$$R=\kappa rac{d(d-1)}{L^2}\;,\qquad \kappa=0,\pm 1\;.$$

Minimal submanifolds are extrema if

$$\lambda_1 = \lambda_6$$
 or $\mathcal{R}^{ij} \mathcal{K}^{\mathcal{A}}_{ij} = 0$.

The second condition is true for curves $\mathcal{R}^{ij} = 0$ and surfaces

$$\mathcal{R}^{ij}K^{A}_{ij} = \frac{\mathcal{R}}{2}\mathrm{Tr}K^{A} = 0$$

Shape equations in maximally symmetric spaces

Suppose that the ambient has

$$R_{\mu
u
ho\sigma} = rac{R}{d(d-1)} \left(g_{\mu
ho} g_{
u\sigma} - g_{\mu\sigma} g_{
u
ho}
ight) \qquad R = {
m const}$$

with

$$R=\kappa rac{d(d-1)}{L^2}\;,\qquad \kappa=0,\pm 1\;.$$

Minimal submanifolds are extrema if

$$\lambda_1 = \lambda_6$$
 or $\mathcal{R}^{ij} \mathcal{K}^A_{ij} = 0$.

The second condition is true for curves $\mathcal{R}^{ij} = 0$ and surfaces

$$\mathcal{R}^{ij}K^{A}_{ij} = rac{\mathcal{R}}{2}\mathrm{Tr}K^{A} = 0$$

For p > 2, minimal submanifolds are NOT necessarily extrema

Considering a curve γ in \mathbb{R}^2 , \mathbb{S}^2 or \mathbb{H}^2

Reminiscences

 $ln[16]:= eomf = VariationalD[\mathcal{L}[\phi[r]], \phi[r], r] // FullSimplify$ simplifica completant

 $\begin{aligned} & \text{Out[16]=} \frac{1}{\text{L}^2 \ (\text{L}^2 + \text{r}^4 \ \phi'[\,\text{r}\,]^2\,)^4 \ \sqrt{\frac{\text{L}^2 + \text{r}^4 \ \phi'[\,\text{r}\,]^2}{\text{r}^2}}} \\ & \text{r} \ \left(-\text{L}^2 \ \lambda_0 \ \left(\text{L}^2 + \text{r}^4 \ \phi'[\,\text{r}\,]^2\,\right)^3 \ \left(3 \ \text{L}^2 \ \phi'[\,\text{r}\,] + \text{r}^4 \ \phi'[\,\text{r}\,]^3 + \text{L}^2 \ \text{r} \ \phi''[\,\text{r}\,]\right) +} \\ & \lambda_5 \ \left(75 \ \text{L}^4 \ \text{r}^8 \ \phi'[\,\text{r}\,]^5 - 3 \ \text{L}^2 \ \text{r}^{12} \ \phi'[\,\text{r}\,]^7 - \text{r}^{16} \ \phi'[\,\text{r}\,]^9 + \text{L}^2 \ \text{r}^{13} \ \phi'[\,\text{r}\,]^6 \ \phi''[\,\text{r}\,] - \\ & 5 \ \text{L}^4 \ \text{r}^4 \ \phi'[\,\text{r}\,]^3 \ \left(37 \ \text{L}^2 + \text{r}^6 \ \phi''[\,\text{r}\,] \ (-15 \ \phi''[\,\text{r}\,] + 4 \ \text{r} \ \phi^{(3)}[\,\text{r}\,]\,)\right) + \\ & \text{L}^6 \ \phi'[\,\text{r}\,] \ \left(18 \ \text{L}^2 - 5 \ \text{r}^6 \ \phi''[\,\text{r}\,] \ (27 \ \phi''[\,\text{r}\,] + 4 \ \text{r} \ \phi^{(3)}[\,\text{r}\,]\,)\right) + \\ & \text{L}^4 \ \text{r}^5 \ \phi'[\,\text{r}\,]^2 \ \left(-267 \ \text{L}^2 \ \phi''[\,\text{r}\,] + 30 \ \text{r}^6 \ \phi''[\,\text{r}\,]^3 + 4 \ \text{L}^2 \ \text{r}^2 \ \phi^{(4)}[\,\text{r}\,]\,) + \\ & 2 \ \text{L}^4 \ \text{r}^9 \ \phi'[\,\text{r}\,]^4 \ \left(54 \ \phi''[\,\text{r}\,] + \text{r} \ (-10 \ \phi^{(3)}[\,\text{r}\,] + \text{r} \ \phi^{(4)}[\,\text{r}\,]\,)\,) + \\ & \text{L}^6 \ \text{r} \ \left(46 \ \text{L}^2 \ \phi''[\,\text{r}\,] - 5 \ \text{r}^6 \ \phi''[\,\text{r}\,]^3 + 2 \ \text{L}^2 \ \text{r} \ \left(10 \ \phi^{(3)}[\,\text{r}\,] + \text{r} \ \phi^{(4)}[\,\text{r}\,]\,)\,)\,) \right) \end{aligned}$

This is the shape equation for a curve in the Poincaré disk

Using the shape equations instead

$$2\tilde{\Delta}\mathrm{Tr}\mathbf{k} + \mathrm{Tr}\mathbf{k}^{3} - \left(\frac{\hat{\lambda}_{0}}{\lambda_{5}^{\prime}} - \frac{2\kappa}{L^{2}}\right)\mathrm{Tr}\mathbf{k} = 0$$

In arc-length parametrization

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two-step splitting

- First find out the extrinsic curvature
- \blacktriangleright Second invert this curvature to find γ

Using the shape equations instead

$$2\tilde{\Delta}\mathrm{Tr}\mathbf{k} + \mathrm{Tr}\mathbf{k}^{3} - \left(\frac{\hat{\lambda}_{0}}{\lambda_{5}^{\prime}} - \frac{2\kappa}{L^{2}}\right)\mathrm{Tr}\mathbf{k} = 0$$

In arc-length parametrization

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Two-step splitting

- First find out the extrinsic curvature
- \blacktriangleright Second invert this curvature to find γ

Perhaps this can be solved (?)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finding the extrinsic curvature

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Simplest solutions, k = const

Geodesics k = 0 and CMC $k^2 = B$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finding the extrinsic curvature

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Simplest solutions, k = const

Geodesics k = 0 and CMC $k^2 = B$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Even these cannot be spotted straightaway in the old equation

Finding the extrinsic curvature

$$2\ddot{k} + k^3 - B k = 0$$
, $B = \left(\frac{\hat{\lambda}_0}{\lambda'_5} - \frac{2\kappa}{L^2}\right)$

Simplest solutions, k = const

Geodesics k = 0 and CMC $k^2 = B$

In fact, the full solution can be found !!

$$k^{2}(s) = \alpha \left[1 - rac{lpha - \gamma}{lpha} \mathrm{sn}^{2} (rac{1}{2} \sqrt{lpha - eta} \, s, \, rac{lpha - \gamma}{lpha - eta})
ight]$$

With $\operatorname{sn}(z,m)$ a Jacobi elliptic function and lpha, γ and eta constants

Langer-Singer '84

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Possible behaviour for $u(s) = k^2(s)$

- Orange: Constant mean curvature
- Red: Wavelike
- Blue: Orbitlike
- Green: Asymptotically geodesic

Extrema in \mathbb{H}^2

Now, we must invert k(s)

This is rather involved, yet attainable analytically

For hyperbolic geometry \mathbb{H}^2

$$ds^2 = \frac{1}{z^2} \left(dx^2 + dz^2 \right)$$

Wavy solutions in \mathbb{H}^2 read

$$z(s) = \frac{C}{2+\lambda} \frac{\exp\left[\sqrt{C^2 - 4(\lambda+1)}\left(\frac{s}{4} - \frac{2(C-2)}{4\sqrt{2C(C+2)}}\Pi\left[n,\varphi(s);m\right]\right)\right]}{\sqrt{(C+2)^2 - 4(C+2+\lambda)\operatorname{sn}^2\left(\sqrt{\frac{C}{2}}s,\frac{C+2+\lambda}{2C}\right)}}$$

Where C and λ are constants, while

$$\varphi(s) = \operatorname{amp}\left(\sqrt{\frac{C}{2}}s, \frac{C+2+\lambda}{2C}\right)$$

Extrema in \mathbb{H}^2

▶ ▲ 善 ▲ 善 ● � � �

Application: holographic entanglement entropy

For field theories with an Einstein gravity dual

Area functional

$$S_{ ext{eff}}[\Sigma] = rac{1}{4G_d} \int_{\Sigma} d^p \sigma \, \sqrt{h}$$

Minimize

$$\operatorname{Tr} K^A = 0$$

Evaluate on-shell

$$S_{\mathrm{EE}}(A) = S_{\mathrm{eff}}^{\mathrm{on-shell}}[\Sigma]$$
.

Ryu, Takayanagi '06

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Application: holographic entanglement entropy

If the dual gravitational theory has h.c. corrections

$$\mathcal{L} = -2\Lambda + R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}$$

Then the EE functional

$$\begin{split} S_{\text{eff}} &= \frac{1}{4G_d} \int_{\Sigma} d^p \sigma \sqrt{h} \Big[1 + 2c_1 R + c_2 \left(R_A{}^A - \frac{1}{2} \text{Tr} \mathcal{K}_A \text{Tr} \mathcal{K}^A \right) \\ &+ 2c_3 \left(R_{AB}{}^{AB} - \text{Tr} (\mathcal{K}^A \mathcal{K}_A) \right) \Big] \end{split}$$

Bhattacharrya, Sharma, Sinha; Camps; Dong '13

- To find the EE one must evaluate the functional on an extremum.
- Which of the possible extrema is not settled (minimal??)
- It would be nice to be able to scan the space of extrema.

Application: holographic entanglement entropy

If the dual gravitational theory has h.c. corrections

$$\mathcal{L} = -2\Lambda + R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}$$

Then the EE functional

$$\begin{split} S_{\text{eff}} &= \frac{1}{4G_d} \int_{\Sigma} d^p \sigma \sqrt{h} \Big[1 + 2c_1 R + c_2 \left(R_A{}^A - \frac{1}{2} \text{Tr} \mathcal{K}_A \text{Tr} \mathcal{K}^A \right) \\ &+ 2c_3 \left(R_{AB}{}^{AB} - \text{Tr} (\mathcal{K}^A \mathcal{K}_A) \right) \Big] \end{split}$$

Bhattacharrya, Sharma, Sinha; Camps; Dong '13

- To find the EE one must evaluate the functional on an extremum.
- Which of the possible extrema is not settled (minimal??)
- It would be nice to be able to scan the space of extrema.

Clearly, the extrema are solutions to the shape equations

Entanglement entropy AdS₃

For a higher-derivative theory (such as NMG)

We know all the extrema

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Entanglement entropy AdS_3/CFT_2

The EE for an interval is universal

$$\mathcal{S}_{ ext{EE}}(\mathcal{A}) = rac{c}{3} \log\left(rac{\ell}{\epsilon}
ight) + \mathcal{O}(\epsilon)$$

Holzhey, Larsen, Wilczek '94

Using the fact that

$$c = \frac{L}{2G_3} g^{\mu\nu} \frac{\partial \mathcal{L}}{\partial R_{\mu\nu}} \,,$$

Saida, Soda '00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We show that

$$S_{\mathrm{EE}}(A) = S_{\mathrm{on-shell}}^{\mathrm{Geo}}[\Sigma],$$

Are geodesics minimal? Let's compare

$$\hat{S}_{\mathrm{on-shell}}[\Sigma] = \ell rac{d}{d\ell} \, S_{\mathrm{on-shell}}[\Sigma]$$

Comparing on-shell values in NMG

The geodesic's on-shell value is the black one (**not** minimal)

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

Interesting questions

- If not minimality then which criterium?
- What if geodesics are not extrema?
- What about perturbations? or curvature driven flows?
- Is there an information theoretic interpretation of other extrema in terms of:
 - Length and differential entropy

Czech, Hayden, Lashkari, Swingle '14

The surface/state correspondece

Miyaji, Takayanagi '15

How far can we get in higher-dimensional settings?

Fonda, Véliz-Osorio .. in progress

How far can we get in less symmetric ambients?

.. sometimes you get homework

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Anomalies and flows

Chiral anomalies

The c-theorem for parity violating $(c_L \neq c_R)$

$$T(z)T(0) \sim \frac{c_L/2}{z^4} + \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \dots$$

$$\bar{T}(\bar{z})T(0) \sim \frac{c_R/2}{z^4} + \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \dots$$

Along the flow

$$trac{d}{dt}\left(c_L(t)+c_R(t)
ight)\leq 0 \qquad trac{d}{dt}\left(c_L(t)-c_R(t)
ight)=0$$

Bastianelli, Lindström '96

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Holographically with Topologically Massive Gravity

$$c_L = rac{3\ell}{2G}\left(1+rac{1}{\mu\ell}
ight) \qquad c_R = rac{3\ell}{2G}\left(1-rac{1}{\mu\ell}
ight)$$

Torsion and anomalies

For a theory with chiral anomaly $(c_L \neq c_R)$

$$S_{\mathsf{EE}}[\Sigma] = \int_{\Sigma} d\sigma \sqrt{h} \left(\mathfrak{m} + \mathfrak{s} \, \tau\right)$$

Castro, Detournay, Iqbal, Perlmutter '14

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Torsion and anomalies

For a theory with chiral anomaly $(c_L \neq c_R)$

$$S_{\mathsf{EE}}[\Sigma] = \int_{\Sigma} d\sigma \sqrt{h} \left(\mathfrak{m} + \mathfrak{s} \, \tau \right)$$

Castro, Detournay, Iqbal, Perlmutter '14

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Shape equations

$$\mathfrak{m} K_{A} + \mathfrak{s} \epsilon_{AB} \left(\tilde{D}^{B}_{sC} K^{C} + R_{s}^{B} \right) = 0,$$

Torsion and anomalies

For a theory with chiral anomaly $(c_L \neq c_R)$

$$S_{\mathsf{EE}}[\Sigma] = \int_{\Sigma} d\sigma \sqrt{h} \left(\mathfrak{m} + \mathfrak{s} \, \tau \right)$$

Castro, Detournay, Iqbal, Perlmutter '14

Shape equations

$$\mathfrak{m} \, \mathcal{K}_{A} + \mathfrak{s} \, \epsilon_{AB} \left(\tilde{D}^{B}_{sC} \mathcal{K}^{C} + \mathcal{R}^{B}_{s} \right) = 0 \,,$$

For MSS spaces

$$\mathfrak{m}k_{FS}-\mathfrak{s}\tau_{FS}k_{FS}=0\qquad \mathfrak{s}k_{FS}=0$$

Solutions are nice!!

 $k_{FS} = \text{const} > 0$ and $\tau_{FS} = \mathfrak{m}/\mathfrak{s}$

Castro, Fonda, Véliz-Osorio .. in progress

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Curly extrema \mathbb{H}_3

Helices

 $x^{\mu}(s) = \frac{1}{\cosh\gamma\cosh\alpha s - \sinh\gamma\sin\beta s} \left(\cosh\gamma\sinh\alpha s, \sinh\gamma\cos\beta s, 1\right)$

Curly extrema AdS₃

Helices

 $x^{\mu}(s) = \frac{1}{\cosh\gamma\cosh\alpha s - \sinh\gamma\cosh\beta s} \left(\cosh\gamma\sinh\alpha s, \sinh\gamma\sinh\beta s, 1\right)$

The on-shell value

$$\mathcal{S}[\Sigma]^{\mathrm{Hel}}_{o.s.} = 2\mathfrak{m}\,\ell_{\mathrm{Hel}}(\Sigma) + \mathfrak{s}(\eta_f - \eta_i) \qquad \ell_{\mathrm{Hel}} pprox |lpha|^{-1}\log(\ell/arepsilon)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

TMG flows driven by a scalar $\varphi(z)$

$$ds^2=rac{dz^2}{z^2f(z)}+rac{\eta_{ab}dx^adx^b}{z^2}\,.$$

Flowing shape equations

$$\mathfrak{m}K_{A} + \mathfrak{s}\,\epsilon_{AB}\tilde{D}^{B}_{s\,C}K^{C} = -\mathfrak{s}\epsilon_{AB}\,\partial^{B}\varphi\partial_{s}\varphi$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

TMG flows driven by a scalar $\varphi(z)$

$$ds^2=rac{dz^2}{z^2f(z)}+rac{\eta_{ab}dx^adx^b}{z^2}\,.$$

Flowing shape equations

$$\mathfrak{m} K_{A} + \mathfrak{s} \epsilon_{AB} \tilde{D}^{B}_{s}{}_{C} K^{C} = -\mathfrak{s} \epsilon_{AB} \partial^{B} \varphi \partial_{s} \varphi$$

One can show that connected extrema must always curl

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

TMG flows driven by a scalar $\varphi(z)$

$$ds^2=rac{dz^2}{z^2f(z)}+rac{\eta_{ab}dx^adx^b}{z^2}\,.$$

Flowing shape equations

$$\mathfrak{m} \mathcal{K}_{A} + \mathfrak{s} \epsilon_{AB} \tilde{D}^{B}_{s}{}_{C} \mathcal{K}^{C} = -\mathfrak{s} \epsilon_{AB} \partial^{B} \varphi \partial_{s} \varphi$$

One can show that connected extrema must always curl

Flowing curls are yet to be found

$$\tau_{\rm FS} = \frac{\mathfrak{m}}{\mathfrak{s}} - \eta^z \,\partial_s \log\left(k_{\rm FS}\right)$$
$$\dot{k}_{\rm FS} = \mu^z \,\,\varphi'(z)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

TMG flows driven by a scalar $\varphi(z)$

$$ds^2 = \frac{dz^2}{z^2 f(z)} + \frac{\eta_{ab} dx^a dx^b}{z^2}$$

Flowing shape equations

$$\mathfrak{m} K_{A} + \mathfrak{s} \epsilon_{AB} \tilde{D}^{B}_{s}{}_{C} K^{C} = -\mathfrak{s} \epsilon_{AB} \partial^{B} \varphi \partial_{s} \varphi$$

One can show that connected extrema must always curl

Flowing curls are yet to be found

$$\begin{aligned} \tau_{\rm FS} &= \frac{\mathfrak{m}}{\mathfrak{s}} - \eta^z \, \partial_s \log \left(k_{\rm FS} \right) \\ \dot{k}_{\rm FS} &= \mu^z \, \varphi'(z)^2 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

You'll be hearing from us ... stay tunned

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Epilogue

Elastica

Two interesting set-ups

Canham-Helfrich

 $p=2, M=\mathbb{R}^3$

$$\mathcal{L} = \left[\sigma + rac{k_c}{4} (\mathrm{Tr} \mathcal{K})^2 + ar{k}_c \det \mathcal{K}
ight]$$

Sadowsky-Wünderlich $p = 2, M = \mathbb{R}^3$

$${\cal L} = rac{(k_{
m FS}^2 + au_{
m FS}^2)^2}{k_{
m FS}^2}\,.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Elastica

Two interesting set-ups

Canham-Helfrich

 $p=2, M=\mathbb{R}^3$

$$\mathcal{L} = \left[\sigma + rac{k_c}{4} (\mathrm{Tr} \mathcal{K})^2 + ar{k}_c \det \mathcal{K}
ight]$$

Sadowsky-Wünderlich $p = 2, M = \mathbb{R}^3$

$${\cal L} = rac{(k_{
m FS}^2 + au_{
m FS}^2)^2}{k_{
m FS}^2}\,.$$

Judicious breaking of gauge invariance

Interesting problems

Elastica in (evolving) surfaces

- Embeddings of embeddings, interface theory on surfaces
- Minimal surfaces bounded by elastic lines

```
Giomi, Mahadevan '11
```

• Conformal maps: Minimal in $AdS_d \leftrightarrow Willmore$ in \mathbb{R}^3

Alexakis, Mazzeo '10; Fonda, Seminara, Tonni '15

Generalized curvature flows

Fonda, Véliz-Osorio...in progress