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rS((0-@)2 4+ G%(8,-9)2) + 4G2 (28,5 + rd25) = 0,

G?s (2r46TA8TS + S(r482A +2r30,A — 20,90, ® + V(®)) — 4r20,.0;5)
—12(8,G(r? B8y B 4 8:GS?) — 8, B8, G) + r2(r?0,B? — 8,0, B + rB(20,-B + 192 B))G = 0,

—GS(S(r28,B8,G — 8;04G) + rB(2rd,G8,.S + (20,-G + rd2G)S) — 28,G8yS)
+G2(S2(r292B + 278, B — 9529, ®) + 20,.5(0:S — r2B8,S) — 25 (rB(20,S + 1782S) + 8,04 5))
+8,GS?(r2Bo,G — 20,G) = 0,

8,A(r2(8TBG + BBTG) - arc) — 128,48, BG + AG(GS(2r46TA8TS + S(r*82A + 2030, A + V(@)
+740,B2) — 48, AB28,G + r?8, AB8, G + r*82 AB?G + 2r38, AB?G — 2120, 9, ABG
—2r29,AG?S8; S + zrza,,AG2 S8,5 + 82AG — 212 B8, BOrG + 20, BOy G + 2r2 BOz0y BG — 20,95 BC
—0,G252 — 4G255(0:2:0) (r ¢ g) — G2328t<1>2 =0,

S52(G(120,G(— (82 A + r2A8,.B — 8;:B)) + G(r2 (8,04 A + 1 A(20-B + 182 B) — 8,8¢ B) — 8, %9:®)
4010, G — 20, GOtG) + B(r?G(S%(r28,A8,G — 8,0:G) + 128, B? — 8,0, B — 20;G8,.SS)
+G2(25(r%0, A8, 5 — r28,0:S) — 2120, 50,5 + S2V(®)) + r2(8- B85 G + 8:G8,GS?)) + 2G%0,58: 5
+r3B2((28,B + r82B)G — r8,B8,G) — 2GS(G(r? (8, B8 S — 8; B8, S) + 8;955) — 8:Gd5S) = 0,

G2 (—r25%(r29,A8,G + 1 A(20,G + rd2G) — 20,0:G) + 2r>53(8,5(0:G — 72 A8, Q) + 8,G5:S)
—erBTBsaz - 25(r2(r3 (20,8 + ra25) — 8, B8, 5) +825) — 52(r18,B? — 2r28,8, B

+0,®2) — 2r*B20,.82 + 20,52%) + G3(— 52)(2#5(#8 A0S + TA(20,8 + 182S) — 20, atS)
+2r20,8(r2A8,.8 — 28;S) 4+ S2V(®)) + GS(r?0,.GS3(r? A8, G — 20;G) + 0,G(28, S — r%(8, BS
+2B8,-S)) + S(82G — 12(8: BOr-G + rB2(20,G + rd2G))) + 2r2 B8, G (95 S — r? B8, S))
+52(r*B2%(0,G)? — 20,G?) =0,
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Question

How can one describe the dynamics (thermalization) of a
(strongly couple) system?
@ Analyzing small excitations of a uniform static system ...
o Collective modes in CFT/Quasinormal modes in AdS
Janik, Plewa, Spalinski, HS, PRD ’15
Janik, Jankowski, HS, JHEP ’16
Janik, Jankowski, HS, PRL 16
More in Jakub’s talk
@ Full time evolution of a given initial distribution ...
o It is interesting but rather complicated!



Outline

@ AdS/non-CFT setup
e How to model the gravity?
@ Numerical setup
@ 15 order phase transition at linear level

© Full time evolution and 1 phase transition
o Gravity setup
e Time evolution
e Final state

© Summary and future directions
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How to model the gravity?

@ Top-down approach: Deform N'=4 SYM (to N = 2¥)
explicitly known (but rather complicated) gravity
@ Bottom-up approach: Assume AdS/CFT but try to model
the gravity+matter background to approach as closely as
possible to QCD physics (or other physics of interest)
o The simplest nontrivial model

S:

1 1
L [t VT [ 30u600— V)| St
2K 2

Gursoy et. al ’07; Gubser et. al ’08
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How to model the gravity?

@ Top-down approach: Deform N'=4 SYM (to N = 2¥)
explicitly known (but rather complicated) gravity
@ Bottom-up approach: Assume AdS/CFT but try to model
the gravity+matter background to approach as closely as
possible to QCD physics (or other physics of interest)
o The simplest nontrivial model

S:

1 1
L [t VT [ 30u600— V)| St
2K 2

Gursoy et. al ’07; Gubser et. al ’08
o We choose V(¢) such that it reproduces the physics of
interest (like IQCD equation of state, 15¢ or 2°¢ order
transition)

V(O ~—dld- )+ 40", mt = A=)
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Numerical set up for static, homogenous solutions

EoS: (Mathematica)
o Einstein equations: nonlinear coupled second order diff eqs

o Numerical approach: Newton method,
spectral Chebyshev polynomials with 80 grid points,
numerical precision=200 and accuracy~10~°"

@ Proper boundary conditions for asymptotically AdS black
hole solutions in Eddington-Finkelstein coordinates

o The only free parameter is ¢y

e(T) or s(T) or A(T) = dIn(T)
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1% order phase transition

Janik, Jankowski, HS ’17
EoS hydro QNM
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Thermodynamic instability: C'=T0s/0T < 0



AdS/non-CFT setup

1% order phase transition

2k sIT?
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EoS
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o model the gravity?

rder phase transition at linear level

Janik, Jankowski, HS ’17

hydro QNM
=2
0.1 0.2 0.3 0.4 0.5 - 0.6 07q

Thermodynamic instability: C'=T0s/0T < 0
Dynamical instability: in large A for hydro sound/bulk mode

69MV&5¢ ~ e—iwt—l-ikm’

w k

= 17 2T
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Nonlinear regime

Dynamical system and 1%¢ phase transition



; Gravity setup
Full time evolution and 1°° phase transition I'ime evolution
Final state

4D gravity

EoS Free energy

0.0
3
_0_5%
2
w " -1.0
1
=1
=2 -15
-20
Te T
60 0.1 0.2 03 0.4 0.0 0.1 0.2 0.3 0.4
T T

10 /18



Full time evolution and 15¢ phase transition

4D gravity

Gravity setup
I'ime evolution
Final state

EoS

Free energy

0.0
3
2
w -1.0
! =
=2 -15
0 " >¢~=3
T -20 T 1
_80 0.1 0.2 03 0.0 0.1 0.2 0.3 0.4
T T
Potential: V() =—6 cosh(%) A=2

10 /18



Full time evolution and 15¢ phase transition

4D gravity

Gravity setup
I'ime evolution
Final state
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; sravity setup
Full time evolution and 1°° phase transition olution
ate

4D gravity

EoS Free energy
0.0
3
Y| S~
2
w " -1.0
1
=1
2 -15
0 Pu= > ¢u=3
=20
T T
_60 0.1 0.2 03 04 0.0 0.1 0.2 03 04
T T

Potential: V() =—6 cosh(%) — 2", A=2
Ansatz (EF coordinate):

2
ds®> = —Adt® — d%dr + 52 (G da* + G dy?) — 2Bdtdx,
T

A, S, G, ¢ are functions of r, ¢, x. x is periodic.
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Numerical setup for dynamical, inhomogenous solutions

Setup: (Python)

o Einstein equations: 2 + 1 pde’s (using dy := 0 + g@r)
spectral Chebyshev with #80 in radial: 0 <r <1
spectral Fourier with #256 in x ~ x 4+ 127

Smooth/Sharp filtering in x direction:

we use 0.6 as filter parameter

e Initial configuration: unstable BH +3§S(r, =)

@ Proper boundary conditions for asymptotically AdS
solutions with fixed sources (Microcanonical ensemble)
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Setup: (Python)
o Einstein equations: 2 + 1 pde’s (using dy := 0 + g@r)
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e Initial configuration: unstable BH +3§S(r, =)
@ Proper boundary conditions for asymptotically AdS

solutions with fixed sources (Microcanonical ensemble)
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Gravity setup
Full time evolution and 15¢ phase transition I'ime evolution
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Numerical setup for dynamical, inhomogenous solutions

Setup: (Python)

o Einstein equations: 2 + 1 pde’s (using dy := 0 + g@r)
spectral Chebyshev with #80 in radial: 0 <r <1
spectral Fourier with #256 in x ~ x 4+ 127

Smooth/Sharp filtering in x direction:
we use 0.6 as filter parameter
e Initial configuration: unstable BH +3§S(r, =)
@ Proper boundary conditions for asymptotically AdS
solutions with fixed sources (Microcanonical ensemble)
@ Apparent horizon boundary condition at ry = 1
o Holographic renormalization:
(Tij(z, 1)) and (Og (1))
Ward identities:
(T'(x, 1)) = (Op(2,1)) and  VXTij(z,t)) =0
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Time evolution

Janik, Jankowski, HS "17

Perturbations with 127 period: Periodic solution
05 o cos(k ) §S o exp(—wp cos(k x)?)
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Full time evolution and 15¢ phase transition Time evolution

Time evolution

Janik, Jankowski, HS ’17

Perturbations with 127 period: Inhomogenous horizon
0S5 o cos(k x) §S o< exp(—wy cos(k x)?)
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Full time evolution and 15¢ phase transition Time evolution

Time evolution

Janik, Jankowski, HS ’17

Perturbations with 127 period: No gradient along x at late time
0S5 o cos(k x) §S o exp(—wy cos(k x)?)
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Final state seats at T = T..:
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Full time evolution and 15¢ phase transition

Final state

Final state seats at T = T..:

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

0 5 10 15 20 25 30 35
Green lines: Min and Max points on EoS at T,
Blue line: €(x,t¢) for the single mode perturbation
Red line: e(x,ts) for mixed modes perturbation
Hydrodynamics is applicable with 2nd-order trans. coef. ¢/, f./y:
Ppyy = Peg(e) + Cr/y(e) (0z€) + fayy(€) (92¢€)
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There are new stationary domain wall BHs

@ Hydrodynamics is applicable to corresponding strongly
coupled FTs

Q Study the inhomogenous stationary solutions (final states),
e.g. using known probes ...

16 /18



Summary and future directions

Summary and future directions

©

There are new stationary BHs with inhomogenous horizon
There are new stationary domain wall BHs

Hydrodynamics is applicable to corresponding strongly
coupled FTs

Study the inhomogenous stationary solutions (final states),
e.g. using known probes ...

Investigating the nonequilibrium physics is on the way, e.g.
introducing well-defined probes . ..
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Thank you for your attention
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