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Dynamics, phase transitions and holography



o Systems at strong coupling exhibit various phase structures

o Pure gluon system — 1°* order phase transition (left)

o Gluons + quarks — smooth crossover (right)
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Phase structure at strong coupling

o Lattice methods do not reach real time dynamics easily

o Use other methods to model strongly coupled phase transitions
o Compute the spectrum of linearized perturbations

o Compute transport coefficients and non-hydrodynamic modes
o Compute the non-linear time evolution

o Investigate the dynamical appearance of diverse phases

o Check linear and non-linear stability
Method:

Use a string theory based approach to formulate models at strong
coupling!
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Questions

Does spinodal instability appear for a holographic system with
a 15" order phase transition?

©

©

Does the phase separation effect appear dynamically?

©

Are there black hole solution with inhomogeneous horizons?

©

How do non-hydrodynamic degrees of freedom behave in the
critical region?
o Do diffusive modes appear?

Method:
Use a string theory based approach to formulate models at strong
coupling!
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Holography and Quantum Field Theory

o Holographic principle —
Quantum gravity in d T e B
. . n@v@ﬂm@ o5
dimensions must have a R = oy 3 4
number of DOF which ggﬁ@f mgng}
scales like that of QFT in ?&Q’QW@Q&{'
d — 1 dimensions Q&%@%%%?"

't Hooft and Susskind '93

o String Theory realization: AdS/CFT correspondence
Theory is conformal and supersymmetric Maldacena '97

o Extensions to non-supersymmetric and non-conformal field
theories are possible

o Applications: elementary particle physics and condensed
matter physics
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Non-conformal holographic plasma

o Top-down construction

N = 4 broken to A/ = 2* SUSY theory. Known, but
complicated dual gravity description
A. Buchel, S. Deakin, P. Kerner, J. T. Liu, Nucl. Phys. B 784, 72 (2007)

o Bottom-up construction

Assuming AdS/CFT dictionary, try to model gravity+matter
background to approach as closely as possible to your favourite
physics
U. Girsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007

J. Jankowski Dynamics, phase transitions and holography



Holographic set-up — bottom-up approach

o Boundary: add a source for an operator O, in a CFTy4
L= Lcpr + /\d_AO¢
o Bulk: a gravity-scalar systemin D =d + 1

1

1
5 = 272 dDX\/ —8 |:R — 5 ((9(;5)2 - V(¢) + SGH + SCt
I{D M

with the potential
V(¢) = 2A¢ (1 + a¢?)Y* cosh(y @) + by % + by ¢* + bg ¢°
o Ac = —d(d —1)/2 is the cosmological constant

U. Girsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Equilibrium configurations

©

Metric ansatz for a homogeneous configuration
ds? = e*A0) (—h(r)dt? + dx?) — 2B grgt

with ¢(r) = r the holographic coordinate

©

Solve Einstein+matter equations

©

The event horizon: h(ry) =0

©

Entropy and Hawking temperature

A(r B(r
5= 2T (d-DAm) 7 UV ()|

2
KD v

o The free energy is defined by the action F = TSy ghell

U. Giirsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Phase transitions in holography

o Finite T sates correspond to various black hole solutions in the
dual spacetime

o Phase structure is determined by the choice of a,~ and
by, ba, bs, coefficients of V/(¢)

o With a # 0 confinig models (IHQCD)

o It is possible to tune parameters to mimic

— crossover e.g. QCD
—s 15 order phase transition e.g. pure gluon systems
— 214 order phase transition

U. Giirsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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o The free energy is defined by the action
F = Tsonfshell

o Configurations characterized by the horizon radius

o Condition for the 1¢ order phase transition Fpy, = Fgp,

o Similar to Hawking-Page transition of pure AdS

S. W. Hawking, D. N. Page, Commun. Math. Phys. 87, 577 (1983)

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)
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Example I: First order phase transition

In d =3+ 1 we choose

©

Vist(¢) = —12 (1 + a¢?)Y/* cosh(y @) + ba ¢ + by ¢* + b ¢°
with a=0, v =+/7/12, bp =25, by = bg =0
o Conformal dimension of the scalar operator is A = 3.41

Transition between two different black hole solutions

©

o An example of holographic 1 order phase transition

©

No known physical counterpart
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o There exists a critical temperature T, ~ 1.05T,,
o For the unstable region (red dashed line) we have ¢ < 0
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Example II: Confining model IHQCD

o In d =3+ 1 we choose
Viqep(¢) = —12 (142 ¢*)M* cosh(y ¢)+bo ¢*+by ¢*+bs ¢°
with a =1, 7y = /2/3, by = 6.25, by = bg = 0

o Conformal dimension of the scalar operator is A = 3.58

o Transition between black hole and horizon-less geometry
S. W. Hawking, D. N. Page, Commun. Math. Phys. 87, 577 (1983)

o System motivated by the gluon dynamics

o Linear confinement in the meson spectrum, i.e. m2 ~ n
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o Below T,, no black hole solution exists
o Green line - stability region, blue dashed line - spinodal region

o Red dashed line -, dynamically unstable” region
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o The dynamically unstable region for T; < T < Ty
o The limiting points T; = 1.014T,, and T, =5.67T,
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Linear response and Quasinormal modes

o Perturb the system £ = Lo + h;j03(x)5(t) T (x) the response
is the retarded Green's function

Gr(w, k) o i / dtd®x 0(£)e™ [Ty (x, £), Ti(O)])

o Quasinormal modes, i.e., solutions of linearized fluctuation
equations correspond to poles of holographic retarded Green's
functions. In general

w(k) = Qu(k) — iTa(K)

where n =1,2,3, ... Q,(k)—oscillation frequency,
Im(k)—damping rate. Stable modes have I',(k) > 0.

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)
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Quasinormal modes

o Consider perturbations of the 5D black hole background
Gab = g;BbH + hab(r)eisziwt’ b= (DBH + (Z)(r)eisziwt

o QNMs are the solutions of linearized fluctuation equations that

correspond to poles of holographic retarded Green’s functions
o In general

wn(k) = Qp(k) — il 4 (k)

where n =1,2,3, ... Q,(k)—oscillation frequency,

I»(k)—damping rate.
o Stable modes have I',(k) > 0
o A convenient normalization is: qg= %, W= 5tT

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)

J. Jankowski Dynamics, phase transitions and holography



Gauge invariant perturbations

o Gauge invariance at linearized level

hab = hab - vaéb - nga ) ¢ = ¢ - favad)

o Five independent channels
— sound and non-CFT modes, coupled

Zi(htt, hezy hzz, hx + hyy) . Z2(d, hux + hyy)
— twofold degenerated shear mode
Z3(hXZ7hxt)a Z3(hy27hyt)
— scalar mode (EOM similar to external scalar field EOM)
Z4(hxy)

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)
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Comments on numerics and boundary conditions

o In our coordinate system ®(r) = r in the background
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007

o The near-boundary (r — 0) behaviour
d A
Zl(r)NAl—l-Ber, Zz(r)NAzr—l-Bng

imposes A; = A, = 0 boundary condition
o Other modes have Dirichlet BCs at the conformal boundary
o Ingoing boundary conditions at the horizon
o Chebyshev discretization with high numerical precision
o Newton-Rhapson method for the background
o Generalized eigenvalue problem for QNMs, i.e. DetM(w) =0
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Hydrodynamics

o Hydrodynamic mode is defined by

i k=20
Jim wr(k)

o The sound mode

I (4n  C\ 2 3
K)=tek— —— (27415 k
w(k) c 2T<3s+s> + O(k>)

n—shear viscosity, (—bulk viscosity, s—entropy density,
cs—speed of sound, T—temperature

o In holographic models also non-hydrodynamic modes are
present

P. K. Kovtun, A. O. Starinets, Phys. Rev. D 72, 086009 (2005)
M. P. Heller et al. Phys. Rev. Lett. 110, no. 21, 211602 (2013)
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Non-hydrodynamic degrees of freedom (DOF)

o Higher QNM'’s represent non-hydro DOF in QFT

o Crossing of the hydro and non-hydro modes happens when the
hydrodynamic mode is more damped than the higher QNMs

o In the CFT this happens only in the shear mode for
k~1.302m)T . Amado et.al. JHEP 0807, 133 (2008)

o Non-conformality affects the crossing phenomena in qualitative
and quantitative way

o In /' = 4 SYM case the non-hydro QNM'’s are linked with
high order transport coefficients

M. P. Heller,et al. Phys. Rev. Lett. 110, no. 21, 211602 (2013)
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Spinodal instability — linear response theory

o When c¢2 < 0 we have purely damped hydro-modes

L (40  C\ 2 . 2
w~ +i|cs| k 2T(35+ >k—:|:I|C5|k iTsk

so for small enough k we have Im w > 0
o This mode is present for a finite range of 0 < k < kpax

o The maximum momentum for the unstable mode is
kmax — |Cs|/rs

This appears for systems with a 15 order phase transition;
spinodal instability

©

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)
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Examples of spinodal instabilities

o Water: superheated liquid and supercooled vapour

o Spinodal instability in nuclear matter liquid-gas transition

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)
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Example |: Holographic spinodal instability
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The hydrodynamic mode follows the thermodynamic instability

Scale of the bubble = k for which Im w is maximal

The maximal value of Im w is called the growth rate

1.0
e non-hydro,
0.5| = non-hydro, -
« hydro
0.5 1.0 15 20
o Modes for T >~ 1.06 T,,, where c2 ~ —0.1
°
°
°
°

Non-hydrodynamic modes have weak k-dependence
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Example I: Diffusive modes
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o Modes for T ~ 1.00004T,,

o Re w =0 for a range of momenta (here 0.5 < g < 1)

o The sound mode becomes nonpropagating for this range of g

©

The onset of such a behaviour was also seen in
U. Girsoy, S. Lin, E. Shuryak, Phys. Rev. D 88, no. 10, 105021 (2013)

()

Crossing between hydro sound mode and non-hydro mode
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Example |I: Dynamical instability

Re
« non-hydro, .
30 = non-hydro, .:"
25}  hydro ‘.:'.
e
el

2.0, . *

ot .

e .

15pecesee®’ .

.

.
1.0 .

.
.
.
05 .
.
e
0.5 1.0 15 20 25 3.0

.o
......
.........
R
e
.......

« non-hydro,

= non-hydro.
0 ydro,

« hydro

o Quasinormal modes at T = 1.0277,,

o System displays dynamical instability in spite of

thermodynamical stability!

o The system is unstable against uniform (k = 0) perturbations

o Possible implications for thermalization time
U. Gursoy,et al. Phys. Rev. D 94, no. 6, 061901 (2016)
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o Small gap between hydro and non-hydro DOF at low q
o Hydro and non hydro joining at g; ~ 0.14 and g, ~ 1.5
o At g, the real part develops

o This structure is unique for T = T,

= F = = RN Ge



The crossing landscape

potential sound qgc shear g, c? ¢/s
Vaop 0.8 1.1 0.124 | 0.041
Vond 0.55 0.9 0.0 0.061
Vist 0.8 1.15 0.0 | 0.060
ViHQeop 0.14 1.25 0.0 0.512

o The crossing momentum qc at T = T (Vqep, Veng) and

T =Tm (Vist, Vingep )
o In contrast to the CFT case crossing happens in both channels

o Applicability of hydro is restricted near the transition
(especially in the IHQCD model)
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Summary

o Thermodynamic instability — dynamical instability

o Converse doesn't seem to be truel!
U. Gursoy, et al. Phys. Rev. D 94, no. 6, 061901 (2016)

o Non-trivial phase structure limits the applicability of
hydrodynamics

o In most cases non-hydro degrees of freedom have very weak
dependence on k — ,ultralocality”

o Non-linear time evolution — the phase transition concept
beyond the notion of thermodynamic equilibrium

o A conjecture that for a class of systems ¢ < 1/3

P. M. Hohler, M. A. Stephanov, Phys. Rev. D 80, 066002 (2009)
A. Cherman, T. D. Cohen, A. Nellore, Phys. Rev. D 80, 066003 (2009)

C. Hoyos, et al. Phys. Rev. D 94, no. 10, 106008 (2016)

o For more see talk by Hesam!

J. Jankowski Dynamics, phase transitions and holography



