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Outline

@ Motivation and Introduction

Introducing two different ultra-spinning limits.

Generating new ultra-spinning black hole solution.

Kerr/CFT description for one family of ultra-spinning BHs.

e Extremal vanishing horizon (EVH) black holes and ultra-spinning limit.

@ Summery and outlook.
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Motivation an Introduction

— Attractive structure of black holes motivate us to generate new black hole
solutions.

— It is applicable to generate new exact black hole solution by taking some
limits on existence solution, such as ultra-spinning limit.

— Large angular momentum black holes (ultra-spinning).

— by employing ultra-spinning methods we can construct new BH solutions
with different and unusual horizon structure and boundary.
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Kerr-AdS BH
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At the limit a — [ metric and charges will diverge !
To have a BH at the maximum value of rotation parameter, it needs to employ some
technique (ultra-spinning method)
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Ultra-spinning limits

— Asymptotically flat : ¢ — oo

o Myers-perry BHs in the limit of large angular momentum (a — o).
[Emparan, Myeres, (2003)], that yields a static black brane.

— Asymptotically AdS : a — [

e a — [ while keeping the physical mass M fixed (d > 6). [Caldarelli et al.
(2008)].

e a,l — oo while a/l fixed, which is also applicable for ds BH. [Obers et al.
(2008)].
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Ultra-spinning limits

— Asymptotically flat : ¢ — oo

o Myers-perry BHs in the limit of large angular momentum (a — o).
[Emparan, Myeres, (2003)], that yields a static black brane.

— Asymptotically AdS : a — [
e a — [ while keeping the physical mass M fixed (d > 6). [Caldarelli et al.
(2008)].

e a,l — oo while a/l fixed, which is also applicable for ds BH. [Obers et al.
(2008)].

e Hyperboloid membrane limit: a — [ while r4 fixed (d > 4) [Caldarelli et
al. (2008)).

o ARF ultra-spinning limit (super-entropic): a — [ while rescaling the
corresponding azimuthal coordinate ¢ [Mann et al. (2014)].
applicable for a metric that is written in an asymptotically rotating frame
(ARF).
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First method :

ARF ultra-spinning limit




Charged-AdS BH at ultra-spinning limit

ARF ultra-spinning Method [Mann et al. [arXiv:1411.4309] ]

@ i) Transforming metric to an asymptotic rotating frame (ARF) : ¢ = ¢ + zdt
@ ii) Change coordinate ¢ — ¢ = ﬁ,
@ iii) taking limit a — [.

@ iv) Compactifying the new coordinate : ¢ ~ ¢ +

4d U(1)* gauged supergravity with pairwise equal charge (written in ARF)

dr?  do?

>

Agsin? riry + a?

20 2

ds? = -—-=C dtiasm ——— (adt — ————d
S W ( ¢) ( AQ ) w (a = d)) ’

where
1 o2
A, = 2446 -2mr+ ﬁrlrg(rlrg + az), N =1-— e— cos 0
2
w = r1r2+a200826, ri:r+2ms,2:r+qi, 3:17(;—2.
Applying ultra-spinning limit : ¢ = ¢/=, then a — [ J
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4d gauged supergravity BH at US limit [smMN, M. Ghominejad, Phys.Rev.D 95,046002

(2017)]

ds® = —%(dt — Usin? 9d<p)2 + W(

dr® | do* |  sin*f
ar” )+ wvlv [edt — (rirz + £7)dg)?,

A,  sin?6

@ The new coordinate ¢ is non-compact, we compactify it by requiring ¢ ~ ¢ + p.

@ The obtained metric describes a new exact asymptotically AdS BH solution of
the 4d U(1)* gauge supergravity theory.

Horizon geometry

! T, r 2)?
ds} = 24=-d6° + sin" 0 (c )l ) e ) dg?.
sin +

@ Two poles at 6§ = 0, 7, that give rise to a non-compact horizon.

@ k =/{(1 — cos@), for small k, horizon metric becomes

dk? 4k?
dsi, = (r+ + q1)(r+ + @) {@ + ETdSOﬂy

@ These poles are not part of the sapcetime. Therefore metric is regular.
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4d gauged supergravity BH at US limit [s.mM.N, M. Ghominejad, Phys. Rev.D95,

046002 (2017) |

2d non-compact horizons embedded in R®. with ¢; = 10, g2 = 0 (left); ¢ = 10,
g2 =5 (middle); g1 =3, g2 = 6 (right).

Finite entropy : S = 5[(r + q1)(ry + ¢2) + (2]

E = Wflm’ J= 18(2m+2ql+q2)7
Vai(2m+a1) Va2 (2m+q2)
QL=Q2= q14mq1, Qs = Q4= q24mq2' J
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Higher dimensional charged AdS BHs at US limit

@ A general charged solutions of the Einstein-Maxwell Dilaton theory. [Wu (2011)]

£=—g{R - W(a«t)z - ic*(D*U‘I’f? + l%(d —1)[(d - 3)e® 4 e (@d=3)E
2 [, Udr? 2m 9
= Hd—=2 - (9]
where Z; = 1 — a? /1%, and
Nte 2 2 Nite 2 2 2
+ai , o 1 r 4 aj
aQ® = . “dp; — “padp )
N N
Wp? r? 4+ a? \/ Xi
v = - B de* + E = pidg?, w=cWdt— g = pide;

i=1 =1
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Higher dimensional charged AdS BHs at US limit

@ A general charged solutions of the Einstein-Maxwell Dilaton theory. [Wu (2011)]

£=ymgir- LZDEZD ll(d “2 om)2 — LDz l%(d —Dl(d = e 4T (@THE
4

ds® = Ha=z {de + Uir + é—";[ + dQQ},

where Z; = 1 — a? /1%, and

N+e

2 2 Nte 2 2 2
+a; , o 1 r“ + a;
aQ® = 4 “dp; — Cuidp; )
2 N 2 2 N
a? o= WP g ST g2 ewar - S Y g,
=1 -1
@ d=2N+1+e¢, even € =0, odd e =1.

@ N = [(d—1)/2] rotation parameter a; corresponding ¢; coordinates.

@ [d/2] numbers of ”direction cosines” ;’s. Ef\]:f d=1

o Gauge field A = 27 (cWdt — vazl %@pqu&).
IPM (May 2017)
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Charged-AdS BHs at US limit [S.M.N, M. Ghominejad [ariv:1702.03448]]

Ultra-spinning steps

@ We choose ¢; to be ultra-spinning direction
@ Switch to an asymptotically rotating frame (ARF), by setting ¢; = gbf + %t
R
@ Replacing new coordinate ¢; = i—]_, then taking the limit a; — [,
=7

@ pj~ it
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Charged-AdS BHs at US limit [S.M.N, M. Ghominejad [ariv:1702.03448]]

Ultra-spinning steps

@ We choose ¢; to be ultra-spinning direction
@ Switch to an asymptotically rotating frame (ARF), by setting ¢; = gbf + %t
R
@ Replacing new coordinate ¢; = (i—]_, then taking the limit a; — [,
=3

@ pj~ it

Resulting BH solution: ds®> = Ap== {d’yg + UdA'"Z + f]—’;wf} +dQ02.

. dt? 2p° 5 dtdy 2+ a?
df = (PP OV +u) + 151 5 + 0% dw2+%+ L tagt,
I
N+e 2
+aZ 2 _ d,w( r? +a dus , oos 2 2
Qs = r dp; — 2= pidps | + =5 (P°W + 113),
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Charged-AdS BHs at US limit [S.M.N, M. Ghominejad [ariv:1702.03448]]

Ultra-spinning steps

@ We choose ¢; to be ultra-spinning direction
@ Switch to an asymptotically rotating frame (ARF), by setting ¢; = gbf’ + %t
R
@ Replacing new coordinate ¢; = %, then taking the limit a; — [,
=7

@ pj~ it

Resulting BH solution: ds®> = Ap== {d’yg + UdA'"Z + f]—’;wf} +dQ02.

- dt? 2p u2dtd r? +a?
df = (PP OV +u) + 151 5 + 0% dw2+f+z = pidg3,
it
N+e 2
dp; dus R
e ﬂ(Zr =" ”Zd*“) O (W ),
ity Hi Nz =i i
There are some poles at j1; =0,
Indicating a non-compact horizon (topologically sphere with some punctures). J

It is tmpossible to generate a multi ultra-spinning solution.
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Charged general ultra-spinning BHs [S.M.N, M. Ghominejad [ariv:1702.03448]]

@ New exact BH solutions of EMDA theory in all higher
dimensions with regular horizon.

- @ Having a non-compact horizon, topologically is sphere
‘ ‘ with some punctures (p; = 0).
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Charged general ultra-spinning BHs [S.M.N, M. Ghominejad [ariv:1702.03448]]

IPM (May 2017)

New exact BH solutions of EMDA theory in all higher
dimensions with regular horizon.

Having a non-compact horizon, topologically is sphere
with some punctures (p; = 0).

The poles p; = 0 are removed from the spacetime and can
be viewed as a sort of boundary.

They possess a finite entropy as

S_VD_QT:__ICHN ri+a%
T afery) TS
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They have finite conserved charges because of
compactifing the new coordinate as ¢; ~ ¢; + .

The asymptotic boundary rotate with the speed of light.
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Second ultra-spinning method :

Hyperboloid membrane limit (HM)




Hyperboloid membrane limit [Caldarelli et al. [arXiv:0806.1954]]

Singly spinning Kerr-AdS in d dimensions

2 2
ds® = i [dt 2 gin quﬁ] +£—“dr2+g—“d92,
+ 2‘1%;9 [adt r’ +a d¢] +7r%cos’0d03_,
E=1-ad/1% Aa:(r2+a2)(1+7l'—2)727m

Hyperboloid membrane limit method:

i) Defining new coordinate ¢ sinh(c/2) = sin0/vZ, o € [0,00),
ii) Taking the limit a — [ while keeping fixed o.

Resulting metric :

5 Lo 2 dr? 242 2 - 2 2 112
ds™ = —f{dt = Lsinh(0/2)de)” 4“4 (do” +sinh” 0dg”) + r7dSY,
r? 2mrd—?
= 14
f + l2 7’2 + l2

Horizon has tobologv H? x S% 4
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Singly spinning Kerr-AdS at HM limit [Caldarelli et al. [arXiv:0806.1954]]

2 2 2
ds®> = —f(dt —Isinh®(0/2)d¢)” + d% + = Il (do® + sinh® 0d¢?®) + r°dQ7_,,
r? 2mrd=°
! 1+ 2 r2y2

@ The obtained metric is a new exact solution of Einstein-A theory.

@ The horizon has topology H? x =2,

@ These solutions represent asymptotically AdS rotating black membranes.
o Its Conformal boundary :
dsty, = —(dt — Isinh?(0/2)dg)* + & (do? + sinh? 0dg?) + 12dQ3_,.

— 4d case : AdSs.
— In d > 4 boundary is AdS3 x §e==,

@ These classes of solutions are different with “rotating topological black holes”
(Horizon topology H? x H~%).
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Horizon topology

Horizon embedding for 4d case.

Represents an asymptotically AdS rotating black hyperboloid membranes.
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5d Myers-Perry AdS BH

Multi-spinning BHs (MP black hole in 5d)

2 - 2 2 2
4 — —%(dt a sin 9d¢1 bcgs 0 <152)2_~_A9512n e(adt—(r j—a)dgbl)Q
P =p P “a
Ag cos® 0 (r +b) 4P 0
—————(bdt — d —d -—db
02 ( 2 ) A T Ag
2 2 2, 22
i l2—&;r2 (abdt — b(r? + a®) sin? 9d¢1— a(r —|—E ) cos 9d¢2)2
12r2p Za Za
where
A= Lietga? b r~ A o- 2 gn?0
= T—Q(r +a*)(r* + )(1+l2) 2m, g—l—l—gcos ——sm ,
2 2 2 2 2 a’ b2
p° = r"+a"cos”f+b"sin” 0 Eazl—l—Q, Eb:l—l—2
Hyperboloid membrane limit at o direction
@ Replacing sinh(0/2) = é sin 6 o € [0,00)
o Taking limit a — [
IPM (May 2017)
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5d Myers-Perry AdS BH at HM limit [Hennigar et al. [arXiv:1512.02293]]

ds?

{ pA (dt — Isinh®(0/2)de1 — bd¢’2) LrHr -1 (dt N (b2 +r )d¢2)

7”2p2

1 ! b2 -+ 2
+ 53 (bldtfbp sinh?(/2)dgy — 0T )d¢2)

p? cosh?(0/2) E

2 2
p (b
14 =y cosh W2 (o /2)d dr? § P8 NI/e)
+ < + 1+ Epcos U)sm (U/)¢1+A +1+Ebsinh2(a/2) 1

l2

‘ Represents a new exact solution of the Einstein-A theory in 5d. ‘

@ No additional HM limit can be taken in the b-direction.

@ Asymptotically AdS black membrane.

@ Horizon is a non-compact manifold : constant negative curvature.
@ The conformal boundary is AdSy.

@ It is compatible to apply ARF ultra-spinning limit at b-direction
(2 = ¢2/Zp, b —> 1), resulting geometry is ultra-spinning in both directions
simultaneously.
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Combination of HM limit and SE limit [Hennigar et al. [arXiv:1512.02293]]

HM limit at ¢i-direction, and ARF ultra-spinning limit in ¢-direction.

2 —A . 2 2 7’2 =+ 12 -1 2 2 2
ds® = [F dt — lsinh”(0/2)d¢1 — bdp2 | + By dt — (b° + r7)de2
2
" 12% (bldt — bp? sinh?(0/2)d¢r — L(b? + r2)d<p2)
r

2 2 A2 2
+ 2 (% + 1) sinh?(0/2)dg? + %er + 7% cosh? (0/2)‘%.

The new obtained BH solution is again asymptotically AdS.

Interestingly, there is no punctures in the horizon metric.
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Higher dimensional Kerr-AdS BHs

at HM limit+SE

l Dimensions “ Possible US limits [ Horizon topology [ Conf. bdry. ‘
4d(¢ , 0) 1-HM H? AdSs3
1-US sphere with punctures AdSs
1-HM H? x ST AdS; x ST
5d(¢p,,0) 1-US sphere with punctures AdS,
1-HM + 1-US H? x S no punctures flat
1-HM H? x S° AdSs x S?
6d(¢,,01,02) 2-HM negative constant curvature | AdSs
1-US sphere with punctures
1-HM + 1-US H? x S? with punctures flat
1-HM H? x S° AdSs x S?
2-HM negative constant curvature | AdSe
7d(o,,€,01,02) || 1-US sphere with punctures
1-HM + 1-US H3 x S? with punctures
2-HM + 1-US H* x S', no punctures flat

@ Describe novel exact asymptotically AdS black membrane/hole
solutions in the Einstein-A theory.

@ [t is possible to perform the HM limit as many times as there are polar angles.

e ARF US limit and HM limits are commutative with each otherr.

IPM (May 2017)
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@ There are extremal BHs in both US limit cases.
@ We show extremality preserves under both US limits (for a large class of
solutions).

a—1

R — AdS BH US—BH

TH—>0 Tu—0

Ex.— BH ———————— US-FEx.BH



Extrimality under both ultra-spinning limits

@ There are extremal BHs in both US limit cases.

@ We show extremality preserves under both US limits (for a large class of
solutions).

a—1
R—AdSBH —— US—BH

Ty =0 Ty — 0

a—1
Ex.— BH -+ US-FEz.BH

NHEG commutes with both ultra-spinning (SE and HM).
i) Obtaining ultra-spinning BH solution (a — 1), then finding the
extremality conditions Ty =0 =  Ci(qi,m,l,70) =0

IPM (May 2017)
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Extrimality under both ultra-spinning limits

@ There are extremal BHs in both US limit cases.
@ We show extremality preserves under both US limits (for a large class of
solutions).

a—1
R—AdSBH —— US—BH

Ty —0 Ty — 0

a—1
Ex.— BH -+ US-FEz.BH

NHEG commutes with both ultra-spinning (SE and HM).
i) Obtaining ultra-spinning BH solution (a — 1), then finding the
extremality conditions Ty =0 =  Ci(qi,m,l,70) =0
ii) Finding extremal version (Tx =0) = C(q1,q2, m,a,l,1m0) = then

0
performing ultra-spinning (@ — 1) limit = Ca(qi, m,l,70) =0

‘01((17:,”%1,7‘0) = Cs(qi,m, L, ro). ‘
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Kerr/CFT Correspondence



Quantum states in the near horizon region of an extremal rotating black
hole are holographically dual to a 2d chiral CFT.



Kerr/CFT Correspondence

Quantum states in the near horizon region of an extremal rotating black
hole are holographically dual to a 2d chiral CFT.

Ingredients :
— Asymptotic symmetry group (ASG) of a near horizon extremal Kerr
geometry (NHEG) that obey suitably chosen boundary conditions.

The Lie brackets of the generators close on a centreless Virasoro
algebra.

— The Dirac brackets of the associated charges lead to a Virasoro algebra
with a central extension.
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Near Horizon Extremal Geometry (NHEG)

4d ultra-spinning U(1)* gauged SUGRA BH

sin* 0

2 2
e 457y = [edt — (rira + £%)dy)

ds® = _Wr(dt — ¢sin® 9d4p)2 + W(A +

)
- sin“é

[

Extremality conditions

o A'r|'r:7‘o 207 TH|T:'I‘0 :O:> C(To,(]hQQ,m,l) :0

02 e ;
27‘{"111/r_17”())\7

>
Il
=

Taking limit A — 0
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Near Horizon Extremal Geometry (NHEG)

s Wo 2 o | di? Wo .o
ds® = X( 7odt +f2)+sin20d0
. 49 R L
+ 21;7[/ [(ro+q1)(ro+q2)+€2}2(dap—i—krdt)Q,
0

0210 + g1 + ¢2)
X[(To + q1)(ro + g2) +€2] ’
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Near Horizon Extremal Geometry (NHEG)

ds® = %(f P di? +
sin 0
22W,

df2) N Wo

d6?

72 sin? 6

[(’I“O +q1)(ro+ q2) + €2}2 (d@ + k’fdf)Q,

0210 + g1 + ¢2)
X[(To + q1)(ro + g2) +€2] ’

AdSy x S Leguw =0 = SL(2,R). x U(1)r Isometry group J

Boundary conditions : [Strominger (2008)]

o(r*) o) o@/r) O@1/r*)

o) o(/r) O(1/r)
o(1/r) O(/r?) |

O(1/r?)

hyw = au:(’)(r,%,l,l/r2).
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Near Horizon Extremal Geometry (NHEG)

ds* = %(fﬁdfh
sin® 6

02W,

dr? Wo

)+ 0’

72 sin? 6

[(TO +q1)(ro+ q2) + ZZV (d@ + kfdf)Q,

0210 + q1 + q2)
X[(To +q1)(ro+ q2) +€2] ’

AdSy x S Leguw =0 = SL(2,R). x U(1)r Isometry group J

Boundary conditions : [Strominger (2008)]

o(r*) 0(1) o@1/r) O(1/r?
o) o(/r) O(1/r)

1
o = O/ O(1/r?) |+ @ = 0w L1,
O/r®)
LCQMV = h/,”/, — Z[Cm,Cn] = (m - n)<m+'ﬂ' SL(27R) X ViTL J
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ds®

A2
d’l" WO d92

%(—f2d£2+f—2)+

sin? 6
sin 9
2W,

[(ro + @1)(ro + q2) + €]* (dp + k 7di)”

Central charge c¢= 3% W{ﬂ-




Kerr/CFT for 4d U(1)* gauged supergravity BH at US limit smn, m.

Ghominejad, Phys.Rev.D 95,046002 (2017)]

2 Wo 2o dP? Wo 2o
ds® = X( Tdt+f‘2)+sin29d9
.4
0 . R
+ 721;%/ [(ro+q1)(ro+q2)+€2]2(d<p—|—k’rdt)2,
)

Central charge ¢ = 34 42rotaites)
T X

AT /9T

Frolov-Thorne temperature T = _mh:m’ Tr = 2TH|r, =rg-
1 X[(ro+q)(ro+q) + £
- L _ [(ro + q1)(ro + g2) + £°] 7 Th — 0.

21k 2ml(2ro + 1 + q2)

Entropy matching!

Cardy formula : S = ’;:CLTL.

Scrr =

=

[(r+ + @) (r+ + g2) + £°] = Spu
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Kerr/CFT for general charged AdS SE-BHS (sMN, M. Ghominejad [ariv:1702.03448]]

NHEG :

o Extremal version by imposing T|r=r, = 0 and A|r=ro =0

@ Coordinate transformation

r = 7"0(1 + )\f)7 ;= P; + ng, ¢i = (52 + Q?i,

e A—>0

t

2y .
= AN H =

IPM (May 2017)
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Kerr/CFT for general charged AdS SE-BHS (sMN, M. Ghominejad [ariv:1702.03448]]

NHEG :

o Extremal version by imposing T|r=r, = 0 and A|r=ro =0

@ Coordinate transformation

ro= ro(l+XM), @i=¢i+0E si=d+Ni t= A”)\’ Hi = fhi-
To
e A—=>0 J
N
20, d o o .
ds*> = HY 2{ A,?(— )+ > Gin(ddi + ki 7 di) (s + kx 7 df)

ik
N
+ > gi(des + ki di) (dp; + k7 dE) + dﬂg] ,

This class of NHEG admit N = [(d — 1)/2] commuting copies of the
Virasoro algebra.
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Kerr/CFT for general charged AdS super-entropic BHs [S.M.N, M.

Ghominejad [ariv:1702.03448]]

n—1 1/2
3 - N . .
Ci:ﬁki/d 1ya<detgij}1Fa) /d¢>1...d¢i, i=1..n—1, i#j.

3# k‘L‘
Ci = E
472

The N = [(d — 1)/2] Frolov—Thorne temperatures associated to each copy of CFTs

Arealro.

Ty — O/, 1 o, = OTufoe, 1
Lo = T 00, 0, T T 2k Lo = T80, /0, T T 2mky
2 2 2 2
. ™ ™ m ™ Alr=r y
Scrr = sl = Sl == ooly; = =Ty, = % = Spu(ry =r0).

The microscopic entropy of each CFT is the same as Spp. ‘
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NHEG limit under ultra-spinning limit

R—-—AdSBH —  KCFT

US—-BH US—- KCFT

Two different order limits for a general rotating AdS black hole (R-AdS BH).
Horizontal arrows (blue) represent the near horizon (NH) limit. Also the vertical
ones (red) show the ultra-spinning (US) limit.

We show that in both paths the resulting limit (US-KCFT) are exactly the same.
Namely the NHEG and US limits commute with each other.



Ultra-spinning BHs at EVH limit



Extremal Vanishing Horizon (EVH) BHs

A particular class of black holes with vanishing 7" and Ay, but with
Ay /T = fized.

e Examples of EVH black holes/rings (stationary and static)

massless BTZ

— 5d Kerr with one vanishing angualr momentum
— two and three-charges 5d U(1*) gauged supergravity

e Near horizon geometry of any EVH black hole has a pinching AdSs
throat. [Sheikh-jabbari et al(2011)]

@ One can define Near EVH black holes.

e Near horizon limit of Near EVH black hole contains a (pinching) BTZ
geometry. [Sheikh-jabbari et al(2015))

Ultra-spinning black holes at EVH limit!
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Ultra-spinning black holes at EVH limits [smMN, M.H. Vahidinia [arxiv:1705.xxxx]]

@ ARF ultra-spinning BHs at EVH limit
e EVH BHs at ARF ultra-spinning limit

We consider general multi-spinning Kerr-AdS black holes. The temperature and

entropy
N 2\ 9
1 r3 1 1 /1 r%
T = — - +1 s — = ==
271'[T+<l2 + >;af+ri T4+ (2 212 ’
g - Ag_o ﬁa?—i-ri
1—-6 = ’
dry i =i
EVH limit: A, 7 ~ e — 0, Tn = fized.

We find an EVH rotating solution in odd dimensions by imposing the limits
ap=ry =0, a;#0, (i=1...N=[d-1)/2],i#p).

and an important constraint between the parameters of the solution
N
m=T]e
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Ultra-spinning black holes at EVH limits [smMN, M.H. Vahidinia [arxiv:1705.xxxx]]

KAdS BH US — KAdS BH

| |
| |
| |
| |
| |
| |
EVH - KAdS ——+ US—EVH - KAdS

Two different order limits: Horizontal arrows (blue) represent the ARF
ultra-spinning (US) limit. The vertical ones (red) show the EVH limit .

We show that in both paths the resulting limit (US-EVH-KAAS) are
exactly the same.

The ultra-spinning direction : ¢; = ¢;/Z;, a; =1
The EVH limit impose : ap, 7+ — 0, pF# j.
The Near horizon limit of EVH limit also commute with ultra-spinning limit.

The near horizon of ultra-spinning BHs at EVH limit (EVH limit of
ultra-spinning BHs) contains an AdSs.
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EVH limit of Hyperboloid black membrane

@ Performing HM limit onto EVH 5d Meyrs-Perry BH.

@ EVH black holes require r4+ = 0, and ab = 0. We choose b = r, = €* =0, and
a # 0.

@ For the obtained EVH metric we study the effect of Hyperboloid membrane
limit in the ¢ direction. We need to the following scaling

sin @ = v/ E, sinh %
then we take a — ¢, The resulting geometry is

1 + cosh(o/2)

> sinh?(0/2)d¢7 +

ds* = {(dt—famh2 0/2)d )

+

2 2
] [Md T 4 cosh?(0/2) 22

20212 + r2) 4

@ The conformal boundary is a flat spacetime.

@ Angular velocities on the horizon for both direction are vanishing, but
boundary rotates in ¢; direction with the speed of light.
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EVH limit of Hyperboloid black membrane

@ The Near horizon limit of EVH-HM solution is also contains an AdSs.

d? (&2 + )

4
r2/3 4 £2 372 A2 52
= —7dt + — + 77 de3) + ——=
@) Af202

2
ds = M {wuq)(
4 9

s 12 2
2 sinh” od¢?

+  p*cosh?(6/2)

which contains a pinching AdSs throat.

The hyperboloid membrane limit and EVH limit do not commute with each other.
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Concluding remarks

— By employing two different ultra-spinning techniques we generate new classes of
charged rotating BH solutions.

— Obtained geometries in both cases possess a non-compact horizon.

— In the hyperboloid membrane limit case the area is not finite, one can define an
entropy density.

— In the super-entropic case the noncompact horizon has a finite area.

— It is compatible to apply both different ultra-spinning limits simultaneously.
— In both US techniques the extremality conditions commute with the
ultra-spinning limit.

@ NHEG of all new BHs (both cases), possess an AdS, sector.

—~ We show that ARF ultra-spinning BHs have well-defined Kerr/CFT
correspondence description.

— One can construct EVH solutions from each of ultra-spinning BHs. Their
NHEG contains an AdS3 sector.

— EVH limit and ARF ultra-spinning limits commute with each other, but HM
and EVH limits are not commutative.
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Outlook

@ Thermodynamics of hyperboloid black membrane.
@ More on EVH solutions from HM and mixing HM+US limits

o Study on Kerr/CFT duality for HM black hole solutions
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Thank you for your attention



