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Motivation an Introduction

– Attractive structure of black holes motivate us to generate new black hole
solutions.

– It is applicable to generate new exact black hole solution by taking some
limits on existence solution, such as ultra-spinning limit.

– Large angular momentum black holes (ultra-spinning).

– by employing ultra-spinning methods we can construct new BH solutions
with different and unusual horizon structure and boundary.

IPM (May 2017) 3 / 38



Kerr-AdS BH

ds2 = −∆a

ρ2
a

[
dt− a

Ξ
sin2 θdφ

]2
+
ρ2
a

∆a
dr2 +

ρ2
a

Σa
dθ2,

+
Σa sin2 θ

ρ2

[
adt− r2 + a2

Ξ
dφ

]2

,

where

∆a = (r2 + a2)(1 +
r2

l2
)− 2m

r
, Σa = 1− a2

l2
cos2 θ ,

ρ2
a = r2 + a2 cos2 θ Ξ = 1− a2

l2
.

M = m
Ξ
, J = ma

Ξ
.

At the limit a→ l metric and charges will diverge !
To have a BH at the maximum value of rotation parameter, it needs to employ some

technique (ultra-spinning method)
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Ultra-spinning limits

– Asymptotically flat : a → ∞
Myers-perry BHs in the limit of large angular momentum (a→∞).
[Emparan, Myeres, (2003)], that yields a static black brane.

– Asymptotically AdS : a → l

a→ l while keeping the physical mass M fixed (d ≥ 6). [Caldarelli et al.

(2008)].

a, l→∞ while a/l fixed, which is also applicable for ds BH. [Obers et al.

(2008)].

Hyperboloid membrane limit: a→ l while r+ fixed (d ≥ 4) [Caldarelli et

al. (2008)].

ARF ultra-spinning limit (super-entropic): a→ l while rescaling the
corresponding azimuthal coordinate φ [Mann et al. (2014)].
applicable for a metric that is written in an asymptotically rotating frame
(ARF).
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First method :
ARF ultra-spinning limit



Charged-AdS BH at ultra-spinning limit

ARF ultra-spinning Method [Mann et al. [arXiv:1411.4309] ]

i) Transforming metric to an asymptotic rotating frame (ARF) : φ = φR + a
l2
dt

ii) Change coordinate φ→ ϕ = φ
1−a2/l2

,

iii) taking limit a→ l.

iv) Compactifying the new coordinate : ϕ ∼ ϕ+ µ

4d U(1)4 gauged supergravity with pairwise equal charge (written in ARF)

ds2 = −∆r

W

(
dt− a sin2 θ

Ξ
dφ
)2

+W
(dr2

∆r
+
dθ2

∆θ

)
+

∆θ sin2 θ

W

(
adt− r1r2 + a2

Ξ
dφ
)2
,

where

∆r = r2 + a2 − 2mr +
1

`2
r1r2(r1r2 + a2), ∆θ = 1− a2

`2
cos2 θ,

W = r1r2 + a2 cos2 θ, ri = r + 2ms2
i = r + qi, Ξ = 1− a2

`2
.

Applying ultra-spinning limit : ϕ = φ/Ξ, then a→ l
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4d gauged supergravity BH at US limit [SMN, M. Ghominejad, Phys.Rev.D 95,046002

(2017)]

ds2 = − ∆̃r

W̃

(
dt− ` sin2 θdϕ

)2
+ W̃

(dr2

∆̃r

+
dθ2

sin2 θ

)
+

sin4 θ

W̃

[
`dt− (r1r2 + `2)dϕ

]2
,

The new coordinate ϕ is non-compact, we compactify it by requiring ϕ ∼ ϕ+ µ.

The obtained metric describes a new exact asymptotically AdS BH solution of
the 4d U(1)4 gauge supergravity theory.

Horizon geometry

ds2
h =

W̃+

sin2 θ
dθ2 + sin4 θ

(
(r++q1)(r++q2)+`2

)2
W̃+

dϕ2.

Two poles at θ = 0, π, that give rise to a non-compact horizon.

k = `(1− cos θ), for small k, horizon metric becomes

ds2
h = (r+ + q1)(r+ + q2)

[
dk2

4k2
+

4k2

`2
dϕ2

]
,

These poles are not part of the sapcetime. Therefore metric is regular.

It has a finite entropy : S = µ
2

[
(r+ + q1)(r+ + q2) + `2

]
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4d gauged supergravity BH at US limit [S.M.N, M. Ghominejad, Phys. Rev.D95,

046002 (2017) ]

2d non-compact horizons embedded in R3. with q1 = 10, q2 = 0 (left); q1 = 10,
q2 = 5 (middle); q1 = 3, q2 = 6 (right).

Finite entropy : S = µ
2

[
(r+ + q1)(r+ + q2) + `2

]
E = 2m+q1+q2

2
, J = `(2m+q1+q2)

2
,

Q1 = Q2 =

√
q1(2m+q1)

4
, Q3 = Q4 =

√
q2(2m+q2)

4
.
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Higher dimensional charged AdS BHs at US limit

A general charged solutions of the Einstein-Maxwell Dilaton theory. [Wu (2011)]

L =
√
−g

{
R −

(d − 1)(d − 2)

4
(∂Φ)

2 −
1

4
e
−(D−1)ΦF2

+
1

l2
(d − 1)[(d − 3)e

Φ
+ e
−(d−3)Φ

]
}
.

ds2 = H
1
d−2

[
dγ2 +

Udr2

∆
+

2m

UH
ω2 + dΩ2

]
,

where Ξi = 1− a2
i /l

2, and

dΩ2 =

N+ε∑
i=1

r2 + a2
i

Ξi
dµ2

i −
1

Wρ2

(N+ε∑
i=1

r2 + a2
i

Ξi
µidµi

)2

,

dγ2 = −Wρ2

l2
dt2 +

N∑
i=1

r2 + a2
i

Ξi
µ2
i dφ

2
i , ω = cWdt−

N∑
i=1

ai
√
χi

Ξi
µ2
i dφi ,

d = 2N + 1 + ε, even ε = 0, odd ε = 1.

N = [(d− 1)/2] rotation parameter ai corresponding φi coordinates.

[d/2] numbers of ”direction cosines” µi’s.
∑N+ε
i=1 µ2

i = 1.

Gauge field A = 2ms
U H

(
cWdt−

∑N
i=1

ai
√
χi

Ξi
µ2
i dφ
)
.
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Charged-AdS BHs at US limit [S.M.N, M. Ghominejad [ariv:1702.03448]]

Ultra-spinning steps

We choose φj to be ultra-spinning direction

Switch to an asymptotically rotating frame (ARF), by setting φj = φRj +
aj
l2
t.

Replacing new coordinate ϕj =
φRj
Ξj
, then taking the limit aj → l,

ϕj ∼ ϕj + µ

Resulting BH solution: ds2 = Ĥ
1

D−2

[
dγ2
s + Ûdr2

∆̂
+ 2m

ÛĤ
ω2
s

]
+ dΩ2

s.

dγ2
s = −

(
ρ2(Ŵ + µ2

j ) + µ2
j l

2)dt2
l2

+ ρ2µ2
jdϕ

2
j +

2ρ2µ2
jdtdϕ

l
+
∑
i 6=j

r2 + a2
i

Ξi
µ2
i dφ

2
i ,

dΩ2
s =

N+ε∑
i 6=j

r2 + a2
i

Ξi
dµ2

i − 2
dµj
µj

( N∑
i6=j

r2 + a2
i

Ξi
µidµi

)
+
dµ2

j

µ2
j

(
ρ2Ŵ + l2µ2

j

)
,

There are some poles at µj = 0,
Indicating a non-compact horizon (topologically sphere with some punctures).

It is impossible to generate a multi ultra-spinning solution.
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ρ2Ŵ + l2µ2

j

)
,

There are some poles at µj = 0,
Indicating a non-compact horizon (topologically sphere with some punctures).

It is impossible to generate a multi ultra-spinning solution.

IPM (May 2017) 11 / 38



Charged-AdS BHs at US limit [S.M.N, M. Ghominejad [ariv:1702.03448]]

Ultra-spinning steps

We choose φj to be ultra-spinning direction

Switch to an asymptotically rotating frame (ARF), by setting φj = φRj +
aj
l2
t.

Replacing new coordinate ϕj =
φRj
Ξj
, then taking the limit aj → l,

ϕj ∼ ϕj + µ

Resulting BH solution: ds2 = Ĥ
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Charged general ultra-spinning BHs [S.M.N, M. Ghominejad [ariv:1702.03448]]

New exact BH solutions of EMDΛ theory in all higher
dimensions with regular horizon.

Having a non-compact horizon, topologically is sphere
with some punctures (µj = 0).

The poles µj = 0 are removed from the spacetime and can
be viewed as a sort of boundary.

They possess a finite entropy as

S =
VD−2 r

ε−1
+ c

4
√
f(r+)

∏N
i 6=j

r2++a2
i

Ξi
.

They have finite conserved charges because of
compactifing the new coordinate as ϕj ∼ ϕj + µ.

The asymptotic boundary rotate with the speed of light.

The extremal solutions (TH = 0) can be found for all
dimension.
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Second ultra-spinning method :
Hyperboloid membrane limit (HM)



Hyperboloid membrane limit [Caldarelli et al. [arXiv:0806.1954]]

Singly spinning Kerr-AdS in d dimensions

ds2 = −∆a

ρ2
a

[
dt− a

Ξ
sin2 θdφ

]2
+
ρ2
a

∆a
dr2 +

ρ2
a

Σa
dθ2,

+
Σa sin2 θ

ρ2

[
adt− r2 + a2

Ξ
dφ

]2

+ r2 cos2 θ dΩ2
d−4.

Ξ = 1− a2/l2, ∆a = (r2 + a2)(1 + r2

l2
)− 2m

r

Hyperboloid membrane limit method:

i) Defining new coordinate σ sinh(σ/2) = sin θ/
√

Ξ, σ ∈ [0,∞),

ii) Taking the limit a→ l while keeping fixed σ.

Resulting metric :

ds2 = −f
(
dt− ` sinh2(σ/2)dφ

)2
+
dr2

f
+
r2 + l2

4

(
dσ2 + sinh2 σdφ2)+ r2dΩ2

d−4,

f = 1 +
r2

l2
− 2mrd−5

r2 + l2
.

Horizon has topology H2 × Sd−4
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Singly spinning Kerr-AdS at HM limit [Caldarelli et al. [arXiv:0806.1954]]

ds2 = −f
(
dt− l sinh2(σ/2)dφ

)2
+
dr2

f
+
r2 + l2

4

(
dσ2 + sinh2 σdφ2)+ r2dΩ2

d−4,

f = 1 +
r2

l2
− 2mrd−5

r2 + l2
.

The obtained metric is a new exact solution of Einstein-Λ theory.

The horizon has topology H2 × Sd−4.

These solutions represent asymptotically AdS rotating black membranes.

Its Conformal boundary :

ds2
bdry = −

(
dt− l sinh2(σ/2)dφ

)2
+ l2

4

(
dσ2 + sinh2 σdφ2

)
+ l2dΩ2

d−4.

– 4d case : AdS3.
– In d > 4 boundary is AdS3 × Sd−4.

These classes of solutions are different with ”rotating topological black holes”
(Horizon topology H2 ×Hd−4).
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Horizon topology

Horizon embedding for 4d case.

Represents an asymptotically AdS rotating black hyperboloid membranes.
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5d Myers-Perry AdS BH

Multi-spinning BHs (MP black hole in 5d):

ds2 = −∆

ρ2
(dt− a sin2 θ

Ξa
dφ1 −

b cos2 θ

Ξb
dφ2)2 +

∆θ sin2 θ

ρ2
(adt− (r2 + a2)

Ξa
dφ1)2

+
∆θ cos2 θ

ρ2
(bdt− (r2 + b2)

Ξa
dφ2)2 +

ρ2

∆
dr2 +

ρ2

∆θ
dθ2

+
l2 + r2

l2r2ρ2

(
abdt− b(r2 + a2) sin2 θ

Ξa
dφ1 −

a(r2 + b2) cos2 θ

Ξa
dφ2

)2
where

∆ =
1

r2
(r2 + a2)(r2 + b2)(1 +

r2

l2
)− 2m, ∆θ = 1− a2

l2
cos2 θ − b2

l2
sin2 θ,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, Ξa = 1− a2

l2
, Ξb = 1− b2

l2

Hyperboloid membrane limit at a direction :

Replacing sinh(σ/2) = 1
Ξa

sin θ, σ ∈ [0,∞).

Taking limit a→ l

IPM (May 2017) 17 / 38



5d Myers-Perry AdS BH at HM limit [Hennigar et al. [arXiv:1512.02293]]

ds2 =

[
−∆̂

ρ̂2

(
dt− l sinh2(σ/2)dφ1 − b

dφ2

Ξb

)2

+
r2 + l2 − 1

r2ρ2

(
dt− (b2 + r2)

Ξb
dφ2

)2

+
1

l2r2

(
bldt− bρ2 sinh2(σ/2)dφ1 −

l(b2 + r2)

Ξb
dφ2

)2

+
ρ2

2

(
b2

l2
+ 1 + Ξb coshσ

)
sinh2(σ/2)dφ2

1 +
ρ̂2

∆̂
dr2 +

ρ̂2 cosh2(σ/2)

1 + Ξb sinh2(σ/2)

dσ2

4
.

Represents a new exact solution of the Einstein-Λ theory in 5d.

No additional HM limit can be taken in the b-direction.

Asymptotically AdS black membrane.

Horizon is a non-compact manifold : constant negative curvature.

The conformal boundary is AdS4.

It is compatible to apply ARF ultra-spinning limit at b-direction
(ϕ2 = φ2/Ξb, b→ l), resulting geometry is ultra-spinning in both directions
simultaneously.
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Combination of HM limit and SE limit [Hennigar et al. [arXiv:1512.02293]]

HM limit at φ1-direction, and ARF ultra-spinning limit in φ2-direction.

ds2 =

[
−∆̂

ρ̂2

(
dt− l sinh2(σ/2)dφ1 − bdϕ2

)2

+
r2 + l2 − 1

r2ρ2

(
dt− (b2 + r2)dϕ2

)2

+
1

l2r2

(
bldt− bρ2 sinh2(σ/2)dφ1 − l(b2 + r2)dϕ2

)2

+
ρ2

2

(
b2

l2
+ 1

)
sinh2(σ/2)dφ2

1 +
ρ̂2

∆̂
dr2 + ρ̂2 cosh2(σ/2)

dσ2

4
.

The new obtained BH solution is again asymptotically AdS.

Interestingly, there is no punctures in the horizon metric.

IPM (May 2017) 19 / 38



Higher dimensional Kerr-AdS BHs at HM limit+SE

Dimensions Possible US limits Horizon topology Conf. bdry.

4d(φ , θ) 1-HM
1-US

H2

sphere with punctures
AdS3

AdS3

5d(φ, ψ, θ)
1-HM
1-US
1-HM + 1-US

H2 × S1

sphere with punctures
H2 × S1 no punctures

AdS3 × S1

AdS4

flat

6d(φ, ψ, θ1, θ2)
1-HM
2-HM
1-US
1-HM + 1-US

H2 × S2

negative constant curvature
sphere with punctures
H2 × S2 with punctures

AdS3 × S2

AdS5

flat

7d(φ, ψ, ξ, θ1, θ2)

1-HM
2-HM
1-US
1-HM + 1-US
2-HM + 1-US

H2 × S3

negative constant curvature
sphere with punctures
H3 × S2 with punctures
H4 × S1, no punctures

AdS3 × S2

AdS6

flat

Describe novel exact asymptotically AdS black membrane/hole
solutions in the Einstein-Λ theory.

It is possible to perform the HM limit as many times as there are polar angles.

ARF US limit and HM limits are commutative with each otherr.
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Extrimality under both ultra-spinning limits

There are extremal BHs in both US limit cases.

We show extremality preserves under both US limits (for a large class of
solutions).

NHEG commutes with both ultra-spinning (SE and HM).

i ) Obtaining ultra-spinning BH solution (a→ l), then finding the
extremality conditions TH = 0 =⇒ C1(qi,m, l, r0) = 0

ii) Finding extremal version (TH = 0) =⇒ C(q1, q2,m, a, l, r0) = 0 then
performing ultra-spinning (a→ l) limit =⇒ C2(qi,m, l, r0) = 0

C1(qi,m, l, r0) = C2(qi,m, l, r0).
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Kerr/CFT Correspondence



Kerr/CFT Correspondence

Quantum states in the near horizon region of an extremal rotating black
hole are holographically dual to a 2d chiral CFT.

Ingredients :

– Asymptotic symmetry group (ASG) of a near horizon extremal Kerr
geometry (NHEG) that obey suitably chosen boundary conditions.

– The Lie brackets of the generators close on a centreless Virasoro
algebra.

– The Dirac brackets of the associated charges lead to a Virasoro algebra
with a central extension.
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Near Horizon Extremal Geometry (NHEG)

4d ultra-spinning U(1)4 gauged SUGRA BH

ds2 = − ∆̃r

W̃

(
dt− ` sin2 θdϕ

)2
+ W̃

(dr2

∆̃r

+
dθ2

sin2 θ

)
+

sin4 θ

W̃

[
`dt− (r1r2 + `2)dϕ

]2
,

Extremality conditions

∆̃r|r=r0 = 0, TH |r=r0 = 0 =⇒ C(r0, q1, q2,m, l) = 0

Near Horizon Limit

∆r = X(r − r0)2 +O(r − r0)3,

r = r0(1 + λr̂), ϕ = ϕ̂+ Ω0
H t̂, t =

t̂

2πT ′Hr0λ
, θ̂ = θ.

Taking limit λ→ 0
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Near Horizon Extremal Geometry (NHEG)

ds2 =
W̃0

X

(
− r̂2dt̂2 +

dr̂2

r̂2

)
+

W̃0

sin2 θ
dθ̂2

+
sin4 θ

`2W̃0

[
(r0 + q1)(r0 + q2) + `2

]2 (
dϕ̂+ k r̂dt̂

)2
,

k =
`(2r0 + q1 + q2)

X
[
(r0 + q1)(r0 + q2) + `2

] ,

AdS2 × Sd−2; Lξgµν = 0 =⇒ SL(2,R)L × U(1)R Isometry group

Boundary conditions : [Strominger (2008)]

hµν =


O(r2) O(1) O(1/r) O(1/r2)

O(1) O(1/r) O(1/r)
O(1/r) O(1/r2)

O(1/r3)

 , aµ = O(r,
1

r
, 1, 1/r2).

Lζgµν = hµν , =⇒ i[ζm, ζn] = (m− n)ζm+n. SL(2,R)× V irL
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Kerr/CFT for 4d U(1)4 gauged supergravity BH at US limit [SMN, M.

Ghominejad, Phys.Rev.D 95,046002 (2017)]

ds2 =
W̃0

X

(
− r̂2dt̂2 +

dr̂2

r̂2

)
+

W̃0

sin2 θ
dθ̂2

+
sin4 θ

`2W̃0

[
(r0 + q1)(r0 + q2) + `2

]2 (
dϕ̂+ k r̂dt̂

)2
,

Central charge c = 3µ
π
`(2r0+q1+q2)

X
.

Frolov-Thorne temperature TL = − ∂TH/∂r+
∂ΩH/∂r+

|r+=r0 , TR = r0
λ
TH |r+=r0 .

TL =
1

2πk
=
X
[
(r0 + q1)(r0 + q2) + `2

]
2π`(2r0 + q1 + q2)

, TR = 0.

Entropy matching!

Cardy formula : S = π2

3
cLTL.

SCFT =
µ

2

[
(r+ + q1)(r+ + q2) + `2

]
= SBH
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Kerr/CFT for general charged AdS SE-BHs [SMN, M. Ghominejad [ariv:1702.03448]]

NHEG :

Extremal version by imposing T |r=r0 = 0 and ∆̂|r=r0 = 0

Coordinate transformation

r = r0(1 + λr̂), ϕj = ϕ̂j + Ω0
j t̂, φi = φ̂i + Ω0

i t̂, t =
ˆ2Y0

r0∆′′0λ
t̂, µi = µ̂i.

λ→ 0

ds2 = Ĥ
1/(d−2)
0

[
2Û0

∆′′0

(
− r̂2dt̂2 +

dr̂2

r̂2

)
+

N∑
i,k 6=j

g̃ik(dφ̂i + ki r̂ dt̂)(dφ̂k + kk r̂ dt̂)

+

N∑
i

gij(dφ̂i + ki r̂ dt̂)(dϕ̂j + kj r̂ dt̂) + dΩ̂2
0

]
,

This class of NHEG admit N = [(d− 1)/2] commuting copies of the

Virasoro algebra.
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Kerr/CFT for general charged AdS super-entropic BHs [S.M.N, M.

Ghominejad [ariv:1702.03448]]

ci =
3µ

4π2
ki

∫
dn−1yα

(
detg̃ij

n−1∏
α=1

Fα

)1/2 ∫
dφ1 . . . dφi, i = 1 . . . n− 1, i 6= j.

ci =
3µki
4π2

Area|r0.

The N = [(d− 1)/2] Frolov–Thorne temperatures associated to each copy of CFTs

TLφi = − ∂TH/∂r
∂Ωφi/∂r

|r=r0 =
1

2π ki
, TLϕj = − ∂TH/∂r

∂Ωϕj/∂r
|r=r0 =

1

2π kj
.

SCFT =
π2

3
c1Tφ1 =

π2

3
c2Tφ2 = · · · = π2

3
cjTφj =

π2

3
cjTϕj =

A|r=r0
4

= SBH(r+ = r0).

The microscopic entropy of each CFT is the same as SBH.
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NHEG limit under ultra-spinning limit

R− AdSBH −−−−−−−−−−−−→ KCFTy

y
US −BH −−−−−−−−−−−−→ US −KCFT

1Two different order limits for a general rotating AdS black hole (R-AdS BH).
Horizontal arrows (blue) represent the near horizon (NH) limit. Also the vertical
ones (red) show the ultra-spinning (US) limit.

We show that in both paths the resulting limit (US-KCFT) are exactly the same.

Namely the NHEG and US limits commute with each other.



Ultra-spinning BHs at EVH limit



Extremal Vanishing Horizon (EVH) BHs

A particular class of black holes with vanishing T and AH , but with
AH/T = fixed.

Examples of EVH black holes/rings (stationary and static)

– massless BTZ
– 5d Kerr with one vanishing angualr momentum
– two and three-charges 5d U(13) gauged supergravity
– . . .

Near horizon geometry of any EVH black hole has a pinching AdS3

throat. [Sheikh-jabbari et al(2011)]

One can define Near EVH black holes.

Near horizon limit of Near EVH black hole contains a (pinching) BTZ
geometry. [Sheikh-jabbari et al(2015)]

Ultra-spinning black holes at EVH limit!
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Ultra-spinning black holes at EVH limits [SMN, M.H. Vahidinia [arxiv:1705.xxxx]]

ARF ultra-spinning BHs at EVH limit

EVH BHs at ARF ultra-spinning limit

We consider general multi-spinning Kerr-AdS black holes. The temperature and
entropy

T =
1

2π

[
r+

(
r2
+

l2
+ 1

) N∑
i=1

1

a2
i + r2

+

− 1

r+

(
1

2
− r2

+

2l2

)δ ]
,

S =
Ad−2

4r1−δ
+

N∏
i=1

a2
i + r2

+

Ξi
,

EVH limit: A, TH ∼ ε→ 0, TH
A

= fixed.
We find an EVH rotating solution in odd dimensions by imposing the limits

ap = r+ = 0, ai 6= 0, (i = 1 . . . N = [(d− 1)/2], i 6= p).

and an important constraint between the parameters of the solution

m =

N∏
i6=p

a2
i
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Ultra-spinning black holes at EVH limits [SMN, M.H. Vahidinia [arxiv:1705.xxxx]]

Two different order limits: Horizontal arrows (blue) represent the ARF
ultra-spinning (US) limit. The vertical ones (red) show the EVH limit .

We show that in both paths the resulting limit (US-EVH-KAdS) are
exactly the same.

The ultra-spinning direction : ϕj = φj/Ξj , aj → l

The EVH limit impose : ap, r+ → 0, p 6= j.

The Near horizon limit of EVH limit also commute with ultra-spinning limit.

The near horizon of ultra-spinning BHs at EVH limit (EVH limit of
ultra-spinning BHs) contains an AdS3.
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EVH limit of Hyperboloid black membrane

Performing HM limit onto EVH 5d Meyrs-Perry BH.

EVH black holes require r+ = 0, and ab = 0. We choose b = r+ = εα = 0, and
a 6= 0.

For the obtained EVH metric we study the effect of Hyperboloid membrane
limit in the φ1 direction. We need to the following scaling

sin θ =
√

Ξa sinh
σ

2

then we take a→ `, The resulting geometry is

ds2 =

[(
dt− ` sinh2(σ/2) dφ1

)2
+

1 + cosh(σ/2)

2
sinh2(σ/2)dφ2

1 +

+
r2

l2 + r2
dφ2

2

][
l2(l2 + r2)

r2(2l2 + r2)
dr2 + ρ̂2 cosh2(σ/2)

dσ2

4

]
The conformal boundary is a flat spacetime.

Angular velocities on the horizon for both direction are vanishing, but
boundary rotates in φ1 direction with the speed of light.
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EVH limit of Hyperboloid black membrane

The Near horizon limit of EVH-HM solution is also contains an AdS3.

ds2 = Ĥ
2/3
0

[
`4

2(`2 + q)

(
− r̂2dt̂2 +

dr̂2

r̂2
+ r̂2 dφ2

2

)
+

(`2 + q)2

4Ĥ2
0 `

2
sinh2 σdφ2

1

+ ρ̂2 cosh2(σ̂/2)
dσ̂2

4

]
,

which contains a pinching AdS3 throat.

The hyperboloid membrane limit and EVH limit do not commute with each other.
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Concluding remarks

– By employing two different ultra-spinning techniques we generate new classes of
charged rotating BH solutions.

– Obtained geometries in both cases possess a non-compact horizon.

– In the hyperboloid membrane limit case the area is not finite, one can define an
entropy density.

– In the super-entropic case the noncompact horizon has a finite area.

– It is compatible to apply both different ultra-spinning limits simultaneously.

– In both US techniques the extremality conditions commute with the
ultra-spinning limit.

NHEG of all new BHs (both cases), possess an AdS2 sector.

– We show that ARF ultra-spinning BHs have well-defined Kerr/CFT
correspondence description.

– One can construct EVH solutions from each of ultra-spinning BHs. Their
NHEG contains an AdS3 sector.

– EVH limit and ARF ultra-spinning limits commute with each other, but HM
and EVH limits are not commutative.
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Outlook

Thermodynamics of hyperboloid black membrane.

More on EVH solutions from HM and mixing HM+US limits

Study on Kerr/CFT duality for HM black hole solutions
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