Chiral Effects in QCD Plasma

NAVID ABBASI (IPM)

IN COLLABORATION WITH D. ALLAHBAKHSHI , A. DAVODY, F. TAGHAVI

Main goal:

Macroscopic detection of the microscopic anomalies through hydro waves

- 1. Rev. of relativistic hydrodynamics
- 2. Chiral hydrodynamics
- **3. Hydrodynamic excitations**
- 4. Applications a. Chiral fluid above the EWPT b. QCD fluid
- 5. Outlook

1- From **Short** to **Large** Distances:

Short distances: microscopic local QFT

e.g.
$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$

Large distances: Derivative expansion of QFT $O\left(\frac{E}{\Lambda}\right) \sim O\left(\frac{p}{\Lambda}\right) \sim O\left(\frac{l_{ch}}{L}\right) \sim O(l_{ch}\partial)$

e.g. Low energy chiral theory in QCD

$$U = \exp\left(\frac{i}{f}\phi^a\lambda^a\right)$$
 $\mathcal{L}_{eff} = \mathcal{L}_{eff}(U,\partial U,\partial^2 U,\ldots)$

2- Derivative Expansion Around Thermodynamic State

In the long wave-length limit:

Ideal Flui

$$\frac{\ell_{mfp}}{L} \sim \ell_{mfp} \partial \ll 1$$

 $T^{\mu\nu}(x) = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + \dots$

Viscous Fluid

 $J^{\mu}(x) = J^{\mu}_{(0)} + J^{\mu}_{(0)}$

3- Constitutive Relations

current	component
$T^{\mu u}$	10
-	4
J^{μ}	

14 Unknown components In Terms of 5 Fields and Derivatives

To first order:

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + p\eta^{\mu\nu} - \eta P^{\mu\alpha}P^{\nu\beta}(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha}) - \left(\zeta - \frac{2}{3}\eta\right)P^{\mu\nu}\partial_{.u}u^{\mu}$$
$$J^{\mu} = nu^{\mu} - \sigma TP^{\mu\nu}\partial_{\nu}\left(\frac{\mu}{T}\right) + \sigma E^{\mu}$$

4- Hydrodynamic Equations

Conservation eqs:

$$\partial_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\nu}$$
$$\partial_{\mu}J^{\mu} = 0$$

hydro fields:

 $T(x), \ \mu(x), \ u^{\mu}(x)$

MALDACENA, 97

AdS5 Black-Brain Thermal CFT $ds^2 = \frac{dr^2}{r^2 f(br)} - r^2 f(br) dt^2 + r^2 d\vec{x}^2$ $f(r) = 1 - \frac{1}{r^4}, \quad b = \frac{1}{\pi T}$

6- Fluid-Gravity Duality

HUBENY, MINWALLA, RANGAMANI, JHEP, 2007

Metric:

$$ds^{2} = -2 u_{\mu} dx^{\mu} dr - r^{2} f(br) u_{\mu} u_{\nu} dx^{\mu} dx^{\nu} + r^{2} P_{\mu\nu} dx^{\mu} dx^{\nu} + 2 r^{2} b F(br) \sigma_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{2}{3} r u_{\mu} u_{\nu} \partial_{\lambda} u^{\lambda} dx^{\mu} dx^{\nu} - r u^{\lambda} \partial_{\lambda} (u_{\nu} u_{\mu}) dx^{\mu} dx^{\nu}.$$

Constraint Eqs:

$$\partial_{\mu}T^{\mu\nu} = 0 \quad \longleftrightarrow \quad T^{\mu\nu} = \frac{1}{b^4} \left(4 \, u^{\mu} u^{\nu} + \eta^{\mu\nu} \right)$$

Energy-Momentum Tensor on the boundary

7- Generalizations

- 1. Forced Fluid
- 2. Non-Relativistic Fluid
- 3. (Chirally)Charged Fluid

MINWALLA, ET. AL JHEP, 2009

MINWALLA, ET. AL JHEP,2009

BHATTACHARYYA, ET.AL JHEP 2009

$$S = \frac{1}{16\pi G_5} \int \sqrt{-g_5} \left[R + 12 - F_{AB}F^{AB} - \frac{4\kappa}{3} \epsilon^{LABCD} A_L F_{AB} F_{CD} \right]$$
ANOMALY

$$T_{\mu\nu} = p(\eta_{\mu\nu} + 4u_{\mu}u_{\nu}) - 2\eta\sigma_{\mu\nu} + \dots$$
$$l^{\mu} \equiv \epsilon^{\nu\lambda\sigma\mu}u_{\nu}\partial_{\lambda}u_{\sigma}$$
$$J_{\mu} = n \ u_{\mu} - \mathfrak{D} \ P^{\nu}_{\mu}\mathcal{D}_{\nu}n + \xi \ l_{\mu} + \dots$$
vorticity

8- Macroscopic Manifestation of Quantum Anomalies

Motivated by Fluid/Gravity:

In the presence of anomalies one may add parity odd terms:

$$J^{\mu} = n u^{\mu} - \sigma T P^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T}\right) + \sigma E^{\mu} + \xi_{B} B^{\mu}$$

 $\begin{aligned} \partial_{\mu} j^{\mu} &= C E^{\mu} B_{\mu}, \\ \partial_{\mu} T^{\mu\nu} &= F^{\nu\lambda} j_{\lambda} \end{aligned}$

CONTRADICTION WITH SECOND LAW!

9- Symmetry Considerations

Time Reversal Sym.

10- Equality Constraints; "for the First Time"

Constraints on **dissipataive** coefficients:

$$\eta \ge 0, \quad \sigma \ge 0$$

Constarints on **anomalous non-dissipative** transport coefficients:

$$\begin{aligned} \xi &= \mathcal{C}\mu^2 \left(1 - \frac{2}{3} \frac{\bar{n}\mu}{\bar{\epsilon} + \bar{p}} \right) + \mathcal{D}T^2 \left(1 - \frac{2\bar{n}\mu}{\bar{\epsilon} + \bar{p}} \right) \\ \xi_B &= \mathcal{C}\mu \left(1 - \frac{1}{2} \frac{\bar{n}\mu}{\bar{\epsilon} + \bar{p}} \right) - \frac{\mathcal{D}}{2} \frac{\bar{n}T^2}{\bar{\epsilon} + \bar{p}} \end{aligned}$$

Son, Surowka(Phys.Rev.Lett. 103 (2009)) Kharzeev, Yee, Phys.Rev. D84 (2011) Neiman, Oz (JHEP (2011))

11- Quark-Gluon-Plasma Experiment

STEFFAN BASS: PROBING THE QGP AT RHIC

1- Initial State

2- Hydrodynamic Evolution

3- Particle Spectrum in detectors

12-Axial & Vector Currents in QGP:

Microscopic:

vector current: $J^{\mu} = \bar{\psi} \gamma^{\mu} \psi$

axial current: $J_5^{\mu} = \bar{\psi}\gamma^{\mu}\gamma^5\psi$ $\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda}$ $\partial_{\mu}J^{\mu} = 0$

axial anoamly

Macroscopic: (QCD Plasma)

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + p \eta^{\mu\nu}$$
$$J^{\mu} = nu^{\mu} + \xi \,\omega^{\mu} + \xi_{B}B^{\mu}$$
$$J^{\mu}_{5} = n_{5}u^{\mu} + \xi_{5}\,\omega^{\mu} + \xi_{B5}B^{\mu}.$$

 $\partial_{\mu}J_{5}^{\mu} = \mathcal{C}E_{\mu}B^{\mu}$

13-CMW in QGP:

CME:

 $\delta \boldsymbol{j} = rac{\boldsymbol{B}}{2\pi^2 \chi} \delta n_5$ $\delta \boldsymbol{j_5} = rac{\boldsymbol{B}}{2\pi^2 \chi} \delta n$

CSE:

$$(\partial_t^2 - v_{\rm CMW}^2 \delta n(x)_V(x) = 0)$$
$$(\partial_t^2 - v_{\rm CM}^2 \delta n_5(x)_4(x) = 0)$$

$$v_{
m CMW} = rac{B}{2\pi^2\chi}$$
 (2011) Kharzeev, yee (2011)

14- From CMW to the charge dependence of v2

BURNIER, KHARZEEV, LIAO, YEE, (2012)

15- Signature in Experiment

PRL 114, 252302 (2015)

PHYSICAL REVIEW LETTERS

week ending 26 JUNE 2015

ട്ട്

Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions

L. Adamczyk,¹ J. K. Adkins,²⁰ G. Agakishiev,¹⁸ M. M. Aggarwal,³⁰ Z. Ahammed,⁴⁷ I. Alekseev,¹⁶ J. Alford,¹⁹ A. Aparin,¹⁸ D. Arkhipkin,³ E. C. Aschenauer,³ G. S. Averichev,¹⁸ A. Banerjee,⁴⁷ R. Bellwied,⁴³ A. Bhasin,¹⁷ A. K. Bhati,³⁰ P. Bhattarai,⁴² J. Bielcik,¹⁰ J. Bielcikova,¹¹ L. C. Bland,³ I. G. Bordyuzhin,¹⁶ J. Bouchet,¹⁹ A. V. Brandin,²⁶ I. Bunzarov,¹⁸

. . .

(STAR Collaboration)

We present measurements of π^- and π^+ elliptic flow, v_2 , at midrapidity in Au + Au collisions at $\sqrt{s_{\text{NN}}} = 200, 62.4, 39, 27, 19.6, 11.5$, and 7.7 GeV, as a function of event-by-event charge asymmetry, A_{ch} , based on data from the STAR experiment at RHIC. We find that π^- (π^+) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{\text{NN}}} = 27$ GeV and higher. At $\sqrt{s_{\text{NN}}} = 200$ GeV, the slope of the difference of v_2 between π^- and π^+ as a function of A_{ch} exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

16- Full Hydro Computations

N.A., D,ALLAHBAKHSHI, A.DAVODY, F.TAGHAVI (2016)

two sectors: 1) scalar 2) scalar-vector

17- QCD Fluid Coupled to Magnetic Field

18- Chiral Kinetic Theory: CKT

STEPANOV, YIN, 2012

Chiral particles in kinetic theory!

Chiral Magnetic Effect:

$$\begin{aligned} \boldsymbol{j} &= \int_{\boldsymbol{p}} \sqrt{G} \boldsymbol{f} \boldsymbol{\dot{x}} = \int_{\boldsymbol{p}} \boldsymbol{f} \boldsymbol{\hat{p}} + \boldsymbol{E} \times \int_{\boldsymbol{p}} \boldsymbol{f} \boldsymbol{b} + \boldsymbol{B} \int_{\boldsymbol{p}} \boldsymbol{f} (\boldsymbol{\hat{p}} \cdot \boldsymbol{b}) \\ \\ \boldsymbol{j}_{\text{CME}} &= \mu \boldsymbol{B} / (2\pi)^2 \end{aligned}$$

19- CME Out of Equilibrium

ARXIV: 1703.08856 LIAO, ETALL

$$\begin{aligned} \dot{\vec{\mathbf{x}}} &= \hat{\mathbf{p}} + \dot{\vec{\mathbf{p}}} \times \mathbf{b} \ , \ \dot{\vec{\mathbf{p}}} = q_i \, \dot{\vec{\mathbf{x}}} \times \vec{\mathbf{B}} \\ z &= z_0 + \frac{p_{z0}}{p} \int_{t_0}^t \frac{1}{\sqrt{G}} \cos \alpha dt' + \frac{p_{x0}}{p} \int_{t_0}^t \frac{1}{\sqrt{G}} \sin \alpha dt', \\ x &= x_0 - \frac{p_{z0}}{p} \int_{t_0}^t \frac{1}{\sqrt{G}} \sin \alpha dt' + \frac{p_{x0}}{p} \int_{t_0}^t \frac{1}{\sqrt{G}} \cos \alpha dt', \\ y &= y_0 + \frac{p_{y0}}{p} \int_{t_0}^t \frac{1}{\sqrt{G}} dt' + \frac{\chi}{2p} \int_{t_0}^t \frac{q_i B(t)}{p\sqrt{G}} dt'. \end{aligned}$$

20- Mixed CMVW in Scalar Sector

Gravitational Anomaly: New observation

THANK YOU FOR YOUR ATTENTION