Wilsonian Renormalization as a Quantum
 Circuit

Ali Mollabashi

Alexander von Humboldt

Stiftung/Foundation

Recent Trends in String Theory and Related Topics
IPM, Tehran

22 April 2019

Introduction

- It is more than a decade that quantum information theory is playing an important role in the evolution of high energy and condensed matter physics

Introduction

- It is more than a decade that quantum information theory is playing an important role in the evolution of high energy and condensed matter physics
- This has lead to many new insights including:

Introduction

- It is more than a decade that quantum information theory is playing an important role in the evolution of high energy and condensed matter physics
- This has lead to many new insights including:
- Quantum Gravity: BH evaporation, connections between entanglement and geometry, AdS/CFT as a QECC, quantum chaos and information scrambling, ...

Introduction

- It is more than a decade that quantum information theory is playing an important role in the evolution of high energy and condensed matter physics
- This has lead to many new insights including:
- Quantum Gravity: BH evaporation, connections between entanglement and geometry, AdS/CFT as a QECC, quantum chaos and information scrambling, ...
- Condensed Matter Physics: probing topological order by entanglement, classification of topological phases (in low $\operatorname{dim}), \ldots$

Introduction

- It is more than a decade that quantum information theory is playing an important role in the evolution of high energy and condensed matter physics
- This has lead to many new insights including:
- Quantum Gravity: BH evaporation, connections between entanglement and geometry, AdS/CFT as a QECC, quantum chaos and information scrambling, ...
- Condensed Matter Physics: probing topological order by entanglement, classification of topological phases (in low dim), ...
- Quantum Circuit Complexity: Holographic Complexity, Complexity in QFTs, ...

Why Tensor Networks?

- Tensor networks are useful tools doing many-body physics, in the context of condensed matter or high energy

Why Tensor Networks?

- Tensor networks are useful tools doing many-body physics, in the context of condensed matter or high energy
- Applications in a wide range of problems, e.g.:
- the complete phase diagram of Hubbard model
- QCD phase diagram in $2+1$ dim

Why Tensor Networks?

- Tensor networks are useful tools doing many-body physics, in the context of condensed matter or high energy
- Applications in a wide range of problems, e.g.:
- the complete phase diagram of Hubbard model
- QCD phase diagram in $2+1$ dim
- Physical intuition behind TN program: to study local observables such as correclation functions, it is much more economic to have a way to effectively bring in the effect of far away dof's instead of having the wave function everywhere

Why Tensor Networks?

- Tensor networks are useful tools doing many-body physics, in the context of condensed matter or high energy
- Applications in a wide range of problems, e.g.:
- the complete phase diagram of Hubbard model
- QCD phase diagram in $2+1$ dim
- Physical intuition behind TN program: to study local observables such as correclation functions, it is much more economic to have a way to effectively bring in the effect of far away dof's instead of having the wave function everywhere
- Introducing entanglement dof's, TNs offer concrete ways to bring in the affect of far dof's into correlations inside a local region

TN's Guiding Principle

- The big problem dealing with many-body systems is the exponentially large Hilbert space which makes it extremely hard to find the ground state and low energy physics

TN's Guiding Principle

- The big problem dealing with many-body systems is the exponentially large Hilbert space which makes it extremely hard to find the ground state and low energy physics
- The guiding principle is that in a local theory the physical states of interest have a very low amount of entanglement

TN's Guiding Principle

- The big problem dealing with many-body systems is the exponentially large Hilbert space which makes it extremely hard to find the ground state and low energy physics
- The guiding principle is that in a local theory the physical states of interest have a very low amount of entanglement
- The simplest case is 2d CFT. If we pick up a random state in the Hilbert space of a lattice version, the entropy of a block is proportional to the block size but the entanglement entropy scales with the logarithm of the block size which is exponentially smaller.

TN's Guiding Principle

- The big problem dealing with many-body systems is the exponentially large Hilbert space which makes it extremely hard to find the ground state and low energy physics
- The guiding principle is that in a local theory the physical states of interest have a very low amount of entanglement
- The simplest case is 2 d CFT. If we pick up a random state in the Hilbert space of a lattice version, the entropy of a block is proportional to the block size but the entanglement entropy scales with the logarithm of the block size which is exponentially smaller.
- Physical states of interest leave in a corner of the Hilbert space with exponentially suppressed entropy corresponding to entanglement between subsystems.

Simplest Example: MPS states

- In the physical corner the specific property of the states is that whatever the region of interest is, a very few dof's are entangled with the complement

Simplest Example: MPS states

- In the physical corner the specific property of the states is that whatever the region of interest is, a very few dof's are entangled with the complement
- One may think that considering entanglement across the boundary of the region would be enough to construct such a state

Simplest Example: MPS states

- In the physical corner the specific property of the states is that whatever the region of interest is, a very few dof's are entangled with the complement
- One may think that considering entanglement across the boundary of the region would be enough to construct such a state

- But even a generalized version of such a state does not respect translational symmetry

Simplest Example: MPS states

- We introduce 'partons' for each dof

each entangled pair partons are in a maximally entangled state in a D-dim Hilbert space $(|b\rangle)$. Now we have the same amount of entanglement for any cut

Simplest Example: MPS states

- We introduce 'partons' for each dof

each entangled pair partons are in a maximally entangled state in a D-dim Hilbert space $(|b\rangle)$. Now we have the same amount of entanglement for any cut
- To make it rich enough we project to the original dof's

Simplest Example: MPS states

- We introduce 'partons' for each dof

each entangled pair partons are in a maximally entangled state in a D-dim Hilbert space $(|b\rangle)$. Now we have the same amount of entanglement for any cut
- To make it rich enough we project to the original dof's

- We have constructed the state as

$$
|\Psi\rangle=\bigotimes_{i=1}^{N} P_{i} \cdot|b\rangle^{\otimes N}
$$

Simplest Example: MPS states

- The aim was to find an explicit expression for $c_{i_{1}, \cdots, i_{N}}$ in

$$
|\Psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle
$$

Simplest Example: MPS states

- The aim was to find an explicit expression for $c_{i_{1}, \cdots, i_{N}}$ in

$$
\begin{aligned}
|\Psi\rangle & =\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle \\
& =\bigotimes_{i=1}^{N} P_{i} \cdot|b\rangle^{\otimes N}
\end{aligned}
$$

Simplest Example: MPS states

- The aim was to find an explicit expression for $c_{i_{1}, \cdots, i_{N}}$ in

$$
\begin{aligned}
|\Psi\rangle & =\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle \\
& =\bigotimes_{i=1}^{N} P_{i} \cdot|b\rangle^{\otimes N}
\end{aligned}
$$

The projection can be expanded as

$$
P_{i}=\sum_{\substack{\alpha_{i}, \beta_{i}=1, \cdots, D \\ r=1, \cdots, d}} A_{\alpha_{i} \beta_{i}}^{(i), r}|r\rangle\left\langle\alpha_{i}, \beta_{i}\right| \quad, \quad|b\rangle=\frac{1}{\sqrt{D}} \sum_{k=1}^{D}|k, k\rangle
$$

Simplest Example: MPS states

- The aim was to find an explicit expression for $c_{i_{1}, \cdots, i_{N}}$ in

$$
\begin{aligned}
|\Psi\rangle & =\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle \\
& =\bigotimes_{i=1}^{N} P_{i} \cdot|b\rangle^{\otimes N}
\end{aligned}
$$

The projection can be expanded as

$$
P_{i}=\sum_{\substack{\alpha_{i}, \beta_{i}=1, \cdots, D \\ r=1, \cdots, d}} A_{\alpha_{i} \beta_{i}}^{(i), r}|r\rangle\left\langle\alpha_{i}, \beta_{i}\right| \quad, \quad|b\rangle=\frac{1}{\sqrt{D}} \sum_{k=1}^{D}|k, k\rangle
$$

- For a translational invariant systems this leads to

$$
c_{i_{1}, \cdots, i_{N}}=\operatorname{Tr}\left[A^{(1), i_{1}} A^{(2), i_{2}} \cdots A^{(N), i_{N}}\right]
$$

Simplest Example: MPS states

- The aim was to find an explicit expression for $c_{i_{1}, \cdots, i_{N}}$ in

$$
\begin{aligned}
|\Psi\rangle & =\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle \\
& =\bigotimes_{i=1}^{N} P_{i} \cdot|b\rangle^{\otimes N}
\end{aligned}
$$

The projection can be expanded as

$$
P_{i}=\sum_{\substack{\alpha_{i}, \beta_{i}=1, \cdots, D \\ r=1, \cdots, d}} A_{\alpha_{i} \beta_{i}}^{(i), r}|r\rangle\left\langle\alpha_{i}, \beta_{i}\right| \quad, \quad|b\rangle=\frac{1}{\sqrt{D}} \sum_{k=1}^{D}|k, k\rangle
$$

- For a translational invariant systems this leads to

$$
c_{i_{1}, \cdots, i_{N}}=\operatorname{Tr}\left[A^{(1), i_{1}} A^{(2), i_{2} \ldots} A^{(N), i_{N}}\right]
$$

- The number of parameters instead of d^{N} is linear in N, namely

$$
N \cdot d \cdot D^{2}
$$

Outline

MERA: Brief Introduction
Overview of MERA
Overview of cMERA
Spatial Wilsonian RG

Wilsonian RG cMERA Circuits
(0+1)-dim Quantum Circuit Perturbation Theory RG cMERA Circuit: Free Massive Theory RG cMERA Circuit: φ^{4} Theory

Sketch of the Ideas

- The two key tools in this talk are:
- Quantum Circuits (a sequence of unitaries)
- Tensor Networks

Sketch of the Ideas

- The two key tools in this talk are:
- Quantum Circuits (a sequence of unitaries)
- Tensor Networks
- Ideas:

Sketch of the Ideas

- The two key tools in this talk are:
- Quantum Circuits (a sequence of unitaries)
- Tensor Networks
- Ideas:

1. Reformulation of Dynamics: One may think about unitary dynamics as a quantum circuit which entangles local dof's of a state

Sketch of the Ideas

- The two key tools in this talk are:
- Quantum Circuits (a sequence of unitaries)
- Tensor Networks
- Ideas:

1. Reformulation of Dynamics: One may think about unitary dynamics as a quantum circuit which entangles local dof's of a state
2. Reformulation of Renormalization Group: One can think of renormalization group flow as a sequence of local gates which disentangle and isometries which coarse grain local dof's of a state

MERA: quick introduction

- MERA: an upgrade of Kadanoff's block spin renormalization with quantum-information theory

MERA: quick introduction

- MERA: an upgrade of Kadanoff's block spin renormalization with quantum-information theory
- MERA is defined by isometry and Disentangler [Vidal '05]

isometry

disentangler

MERA: quick introduction

- MERA: an upgrade of Kadanoff's block spin renormalization with quantum-information theory
- MERA is defined by isometry and Disentangler [Vidal '05]

isometry

disentangler
- isometry: $N_{u}=N_{0} \cdot 2^{u}$

$$
\begin{gathered}
u=-4 \\
u=-3 \\
u=-2 \\
u=-1 \\
u=0
\end{gathered}
$$

MERA: quick introduction

- MERA: an upgrade of Kadanoff's block spin renormalization with quantum-information theory
- MERA is defined by isometry and Disentangler [Vidal '05]

isometry

disentangler
- isometry: $N_{u}=N_{0} \cdot 2^{u}$

$$
\begin{gathered}
u=-4 \\
u=-3 \\
u=-2 \\
u=-1 \\
u=0
\end{gathered}
$$

- The scale of interest is parametrised as $u=0$

MERA: quick introduction

- MERA: an upgrade of Kadanoff's block spin renormalization with quantum-information theory
- MERA is defined by isometry and Disentangler [Vidal '05]

isometry

disentangler
- isometry: $N_{u}=N_{0} \cdot 2^{u}$

$$
\begin{gathered}
u=-4 \\
u=-3 \\
u=-2 \\
u=-1 \\
u=0
\end{gathered}
$$

- The scale of interest is parametrised as $u=0$
- The entanglement free state where the layered structure ends is called $u=u_{\mathrm{IR}}$

MERA: Top-down \& Bottom-up

- Top-down procedure

MERA: Top-down \& Bottom-up

- Top-down procedure

1. Disentangle local dof's of input state $\left|\Psi_{\mathrm{UV}}\right\rangle$ with a unitary

MERA: Top-down \& Bottom-up

- Top-down procedure

1. Disentangle local dof's of input state $\left|\Psi_{\mathrm{UV}}\right\rangle$ with a unitary
2. Coarse grain to a smaller lattice

MERA: Top-down \& Bottom-up

- Top-down procedure

1. Disentangle local dof's of input state $\left|\Psi_{\mathrm{UV}}\right\rangle$ with a unitary
2. Coarse grain to a smaller lattice
3. Iterate until the resultant state has no entanglement $\left|\Psi_{\text {IR }}\right\rangle$

MERA: Top-down \& Bottom-up

- Top-down procedure

1. Disentangle local dof's of input state $\left|\Psi_{\mathrm{UV}}\right\rangle$ with a unitary
2. Coarse grain to a smaller lattice
3. Iterate until the resultant state has no entanglement $\left|\Psi_{\text {IR }}\right\rangle$
4. We have $\left|\Psi_{\mathrm{IR}}\right\rangle=T_{\mathrm{MERA}}\left|\Psi_{\mathrm{UV}}\right\rangle$

MERA: Top-down \& Bottom-up

- Top-down procedure

1. Disentangle local dof's of input state $\left|\Psi_{\mathrm{UV}}\right\rangle$ with a unitary
2. Coarse grain to a smaller lattice
3. Iterate until the resultant state has no entanglement $\left|\Psi_{\text {IR }}\right\rangle$
4. We have $\left|\Psi_{\text {IR }}\right\rangle=T_{\text {MERA }}\left|\Psi_{\text {UV }}\right\rangle$

- Bottom-up (variational problem)

1. take an IR state $\left|\Psi_{I R}\right\rangle$

MERA: Top-down \& Bottom-up

- Top-down procedure

1. Disentangle local dof's of input state $\left|\Psi_{U V}\right\rangle$ with a unitary
2. Coarse grain to a smaller lattice
3. Iterate until the resultant state has no entanglement $\left|\Psi_{\text {IR }}\right\rangle$
4. We have $\left|\Psi_{\text {IR }}\right\rangle=T_{\text {MERA }}\left|\Psi_{\text {UV }}\right\rangle$

- Bottom-up (variational problem)

1. take an IR state $\left|\Psi_{\mathrm{IR}}\right\rangle$
2. Run the network backward on $\left|\Psi_{\text {IR }}\right\rangle, T_{\text {MERA }}^{\dagger}\left|\Psi_{\text {IR }}\right\rangle$ $T_{\text {MERA }}^{\dagger}$ is parametrized such that the ground state energy is minimized

MERA: Top-down \& Bottom-up

- Top-down procedure

1. Disentangle local dof's of input state $\left|\Psi_{U V}\right\rangle$ with a unitary
2. Coarse grain to a smaller lattice
3. Iterate until the resultant state has no entanglement $\left|\Psi_{\text {IR }}\right\rangle$
4. We have $\left|\Psi_{\text {IR }}\right\rangle=T_{\text {MERA }}\left|\Psi_{\text {UV }}\right\rangle$

- Bottom-up (variational problem)

1. take an IR state $\left|\Psi_{\mathrm{IR}}\right\rangle$
2. Run the network backward on $\left|\Psi_{\text {IR }}\right\rangle, T_{\text {MERA }}^{\dagger}\left|\Psi_{\text {IR }}\right\rangle$ $T_{\text {MERA }}^{\dagger}$ is parametrized such that the ground state energy is minimized
3. Let $\left|\Psi_{\mathrm{UV}}\right\rangle=T_{\text {MERA }}^{\dagger}\left|\Psi_{\mathrm{IR}}\right\rangle$

cMERA [Haegeman-Osborne-Verschelde-Verstraete '11]

- Suppose a simple IR state $|\Omega\rangle \in \mathcal{H}$ Progressively build correlations at finer scales

cMERA [Haegeman-Osborne-Verschelde-Verstraete '11]

- Suppose a simple IR state $|\Omega\rangle \in \mathcal{H}$ Progressively build correlations at finer scales
- The IR state is scale invariant (has no spatial entanglement)

$$
L|\Omega\rangle=0
$$

L is non-relativistic scaling operator

cMERA [Haegeman-Osborne-Verschelde-Verstraete '11]

- Suppose a simple IR state $|\Omega\rangle \in \mathcal{H}$ Progressively build correlations at finer scales
- The IR state is scale invariant (has no spatial entanglement)

$$
L|\Omega\rangle=0
$$

L is non-relativistic scaling operator

- At generic length scale Λe^{u} we have

$$
\left|\Psi_{\mathrm{cMERA}}^{\Lambda e^{u}}\right\rangle=\mathcal{P}_{s} \exp \left(-i \int_{u_{\mathrm{IR}}}^{u} d s(K(s)+L)\right)|\Omega\rangle
$$

cMERA [Haegeman-Osborne-Verschelde-Verstraete '11]

- Suppose a simple IR state $|\Omega\rangle \in \mathcal{H}$

Progressively build correlations at finer scales

- The IR state is scale invariant (has no spatial entanglement)

$$
L|\Omega\rangle=0
$$

L is non-relativistic scaling operator

- At generic length scale Λe^{u} we have

$$
\left|\Psi_{\mathrm{cMERA}}^{\Lambda e^{u}}\right\rangle=\mathcal{P}_{s} \exp \left(-i \int_{u_{\mathrm{IR}}}^{u} d s(K(s)+L)\right)|\Omega\rangle
$$

- $u \rightarrow 0$ corresponds to UV scale $(-\infty<u<0)$

cMERA [Haegeman-Osborne-Verschelde-Verstraete '11]

- Suppose a simple IR state $|\Omega\rangle \in \mathcal{H}$

Progressively build correlations at finer scales

- The IR state is scale invariant (has no spatial entanglement)

$$
L|\Omega\rangle=0
$$

L is non-relativistic scaling operator

- At generic length scale Λe^{u} we have

$$
\left|\Psi_{\mathrm{cMERA}}^{\Lambda e^{u}}\right\rangle=\mathcal{P}_{s} \exp \left(-i \int_{u_{\mathrm{IR}}}^{u} d s(K(s)+L)\right)|\Omega\rangle
$$

- $u \rightarrow 0$ corresponds to UV scale $(-\infty<u<0)$
- Question: How to find $K(u)$?

How to determine $K(u)$?

- For free theories by solving

$$
\frac{\delta\langle\Psi(u)| H(u)|\Psi(u)\rangle}{\delta K(u)}=0
$$

[Haegeman-Osborne-Verschelde-Verstraete '11, Nozaki-Ryu-Takayangi '12]

How to determine $K(u)$?

- For free theories by solving

$$
\frac{\delta\langle\Psi(u)| H(u)|\Psi(u)\rangle}{\delta K(u)}=0
$$

[Haegeman-Osborne-Verschelde-Verstraete '11, Nozaki-Ryu-Takayangi '12]

- Very difficult to generalize to interacting theories

How to determine $K(u)$?

- For free theories by solving

$$
\frac{\delta\langle\Psi(u)| H(u)|\Psi(u)\rangle}{\delta K(u)}=0
$$

[Haegeman-Osborne-Verschelde-Verstraete '11, Nozaki-Ryu-Takayangi '12]

- Very difficult to generalize to interacting theories
- Our steps to get around this problem:

How to determine $K(u)$?

- For free theories by solving

$$
\frac{\delta\langle\Psi(u)| H(u)|\Psi(u)\rangle}{\delta K(u)}=0
$$

[Haegeman-Osborne-Verschelde-Verstraete '11, Nozaki-Ryu-Takayangi '12]

- Very difficult to generalize to interacting theories
- Our steps to get around this problem:

1. Understand connection between Wilsonian RG and tensor networks

How to determine $K(u)$?

- For free theories by solving

$$
\frac{\delta\langle\Psi(u)| H(u)|\Psi(u)\rangle}{\delta K(u)}=0
$$

[Haegeman-Osborne-Verschelde-Verstraete '11, Nozaki-Ryu-Takayangi '12]

- Very difficult to generalize to interacting theories
- Our steps to get around this problem:

1. Understand connection between Wilsonian RG and tensor networks
2. Develop an analytic approach (quantum circuit perturbation theory)

How to determine $K(u)$?

- For free theories by solving

$$
\frac{\delta\langle\Psi(u)| H(u)|\Psi(u)\rangle}{\delta K(u)}=0
$$

[Haegeman-Osborne-Verschelde-Verstraete '11, Nozaki-Ryu-Takayangi '12]

- Very difficult to generalize to interacting theories
- Our steps to get around this problem:

1. Understand connection between Wilsonian RG and tensor networks
2. Develop an analytic approach (quantum circuit perturbation theory)
3. Express Wilsonian RG as spatially local cMERA circuit (it turns out that perturbative Wilsonian RG yields a local $K(s))$

Spatial Wilsonian RG

- The Hilbert space

$$
\mathcal{H}^{\Lambda}=\mathcal{H}^{\Lambda e^{u}} \otimes \mathcal{H}^{\Lambda e^{u}<|\vec{p}| \leq \Lambda}
$$

Spatial Wilsonian RG

- The Hilbert space

$$
\mathcal{H}^{\Lambda}=\mathcal{H}^{\Lambda e^{u}} \otimes \mathcal{H}^{\Lambda e^{u}<|\vec{p}| \leq \Lambda}
$$

- To integrate out spatial modes (similarly for $\pi(\vec{p}, t)$)

$$
\phi(\vec{p}, t)= \begin{cases}\phi_{<}(\vec{p}, t) & \text { if }|\vec{p}| \leq \Lambda e^{u} \\ \phi_{>}(\vec{p}, t) & \text { if } \Lambda e^{u}<|\vec{p}| \leq \Lambda\end{cases}
$$

Spatial Wilsonian RG

- The Hilbert space

$$
\mathcal{H}^{\Lambda}=\mathcal{H}^{\Lambda e^{u}} \otimes \mathcal{H}^{\Lambda e^{u}<|\vec{p}| \leq \Lambda}
$$

- To integrate out spatial modes (similarly for $\pi(\vec{p}, t)$)

$$
\phi(\vec{p}, t)= \begin{cases}\phi_{<}(\vec{p}, t) & \text { if }|\vec{p}| \leq \Lambda e^{u} \\ \phi_{>}(\vec{p}, t) & \text { if } \Lambda e^{u}<|\vec{p}| \leq \Lambda\end{cases}
$$

- The partition function
$Z^{\Lambda}\left[\left\{J_{i}(\vec{p})\right\}\right]=$

$$
\lim _{T \rightarrow \infty(1-i \epsilon)} \int \prod_{|\vec{p}| \leq \Lambda} \mathcal{D} \phi \mathcal{D} \pi e^{i \int_{-T}^{T} d t\left(\int^{\Lambda} d^{d} \vec{p}\left[\pi \dot{\phi}-\mathscr{H}^{\Lambda}\right]\right)} e^{-i \int^{\Lambda} d^{d} \vec{p} \sum_{i} J_{i}(\vec{p}) \mathcal{O}_{i}(\vec{p}, 0)}
$$

Bender-Dunne Basis

- (Weyl-ordered) Bender-Dunne basis ['89]:

$$
T_{m, n}:=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} x^{k} p^{m} x^{n-k}=\frac{1}{2^{m}} \sum_{j=0}^{m}\binom{m}{j} p^{j} x^{n} p^{m-j}
$$

Bender-Dunne Basis

- (Weyl-ordered) Bender-Dunne basis ['89]:

$$
T_{m, n}:=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} x^{k} p^{m} x^{n-k}=\frac{1}{2^{m}} \sum_{j=0}^{m}\binom{m}{j} p^{j} x^{n} p^{m-j}
$$

- In general $T_{m, n}$ is defined for $-\infty<m, n<\infty$.

Bender-Dunne Basis

- (Weyl-ordered) Bender-Dunne basis ['89]:

$$
T_{m, n}:=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} x^{k} p^{m} x^{n-k}=\frac{1}{2^{m}} \sum_{j=0}^{m}\binom{m}{j} p^{j} x^{n} p^{m-j}
$$

- In general $T_{m, n}$ is defined for $-\infty<m, n<\infty$.
- We consider the generic unitary as

$$
U=\exp \left\{i \sum_{m, n=0}^{\infty} c_{m, n} T_{m, n}\right\}
$$

Bender-Dunne Basis

- (Weyl-ordered) Bender-Dunne basis ['89]:

$$
T_{m, n}:=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} x^{k} p^{m} x^{n-k}=\frac{1}{2^{m}} \sum_{j=0}^{m}\binom{m}{j} p^{j} x^{n} p^{m-j}
$$

- In general $T_{m, n}$ is defined for $-\infty<m, n<\infty$.
- We consider the generic unitary as

$$
U=\exp \left\{i \sum_{m, n=0}^{\infty} c_{m, n} T_{m, n}\right\}
$$

- Q: When is the RHS a sum of finitely many terms?

$$
\exp \left\{i \sum_{m, n=0}^{N_{1}} c_{m, n}^{(1)} T_{m, n}\right\} \exp \left\{i \sum_{m, n=0}^{N_{2}} c_{m, n}^{(2)} T_{m, n}\right\}=\exp \left\{i \sum_{m, n=0}^{\infty} c_{m, n} T_{m, n}\right\}
$$

Circuits in QMs

- A: If $c_{m, n}^{(1)}=0, c_{m, n}^{(2)}=0$ for $m+n>2$

Circuits in QMs

- A: If $c_{m, n}^{(1)}=0, c_{m, n}^{(2)}=0$ for $m+n>2$
- What we learn is that for

$$
U_{1} U_{2} \cdots U_{n}=U=e^{i Q}
$$

we can determine Q if all Q_{i} 's are at most quadratic.

Circuits in QMs

- A: If $c_{m, n}^{(1)}=0, c_{m, n}^{(2)}=0$ for $m+n>2$
- What we learn is that for

$$
U_{1} U_{2} \cdots U_{n}=U=e^{i Q}
$$

we can determine Q if all Q_{i} 's are at most quadratic.

- Q: How to deal with higher orders?
- A: A very special case (order: largest $m+n$)

$$
[\text { order } 2, \text { order } k] \leq \text { order } k
$$

- This means

$$
e^{i\left(Q_{2}^{(1)}+\epsilon Q_{k}^{(1)}\right)} e^{i\left(Q_{2}^{(2)}+\epsilon Q_{k}^{(2)}\right)}=e^{i\left(Q_{2}+\epsilon Q_{k}\right)}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Continuum Circuits \& Perturbation Theory

- Consider

$$
U=\exp \left(-i \sum_{0 \leq p+q \leq M} c_{p, q} T_{p, q}\right)
$$

but with the following form

$$
\begin{aligned}
U & =\exp \left(-i\left(\sum_{p+q \leq 2} c_{p, q} T_{p, q}+\epsilon \sum_{2<r+s \leq M} c_{r, s} T_{r, s}\right)\right) \\
& \equiv \exp \left(-i\left(Q_{2}+\epsilon Q_{\text {higher }}\right)\right)
\end{aligned}
$$

Continuum Circuits \& Perturbation Theory

- Consider

$$
U=\exp \left(-i \sum_{0 \leq p+q \leq M} c_{p, q} T_{p, q}\right)
$$

but with the following form

$$
\begin{aligned}
U & =\exp \left(-i\left(\sum_{p+q \leq 2} c_{p, q} T_{p, q}+\epsilon \sum_{2<r+s \leq M} c_{r, s} T_{r, s}\right)\right) \\
& \equiv \exp \left(-i\left(Q_{2}+\epsilon Q_{\text {higher }}\right)\right)
\end{aligned}
$$

- It is not hard to show that

$$
U=\left(1+\epsilon \frac{e^{-i \mathrm{ad}_{Q_{2}}-1}}{\operatorname{ad}_{Q_{2}}} Q_{\text {higher }}\right) e^{-i Q_{2}}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Continuum Circuits \& Perturbation Theory

- Consider

$$
U=\exp \left(-i \sum_{0 \leq p+q \leq M} c_{p, q} T_{p, q}\right)
$$

but with the following form

$$
\begin{aligned}
U & =\exp \left(-i\left(\sum_{p+q \leq 2} c_{p, q} T_{p, q}+\epsilon \sum_{2<r+s \leq M} c_{r, s} T_{r, s}\right)\right) \\
& \equiv \exp \left(-i\left(Q_{2}+\epsilon Q_{\text {higher }}\right)\right)
\end{aligned}
$$

- It is not hard to show that

$$
U=\left(1+\epsilon \frac{e^{-i \mathrm{ad}_{Q_{2}}-1}}{\operatorname{ad}_{Q_{2}}} Q_{\text {higher }}\right) e^{-i Q_{2}}+\mathcal{O}\left(\epsilon^{2}\right)
$$

- Remember that the $\mathcal{O}(\epsilon)$ term is at most of order M

cMERA: free massive scalar theory

- Starting with

$$
\langle\phi \mid \Omega\rangle=\mathcal{N} \exp \left(-\frac{1}{2} \int d^{d} \vec{x} \phi(\vec{x}) M \phi(\vec{x})\right)
$$

- Determine what $K(s)$ needs to be such that

$$
\begin{gathered}
\langle\phi| \mathcal{P}_{s} e^{-i \int_{-\infty}^{u} d s(K(s)+L)}|\Omega\rangle= \\
\mathcal{N} \exp \{-\frac{1}{2} \int^{\Lambda} d^{d} \vec{k} \phi(\vec{k}) \sqrt{\vec{k}^{2}+e^{-2 u} m^{2}} \phi(-\vec{k})-\underbrace{\frac{1}{2} \int_{\Lambda}^{\infty} d^{d} \vec{k} \phi(\vec{k}) M \phi(-\vec{k})}_{\text {leftover, unused modes }}\}
\end{gathered}
$$

cMERA: free massive scalar theory

- We find

$$
M=\sqrt{\Lambda^{2}+m^{2}}
$$

$$
\begin{array}{r}
K(s)=\int d^{d} \vec{k}\left[\frac{1}{4} \theta\left(1-\frac{|\vec{k}|}{\Lambda}\right)-\frac{1}{8} \log \left(\frac{\vec{k}^{2}+e^{-2 s} m^{2}}{\Lambda^{2}+m^{2}}\right) \frac{|\vec{k}|}{\Lambda} \theta^{\prime}\left(1-\frac{|\vec{k}|}{\Lambda}\right)\right] \times \\
{[\phi(\vec{k}) \pi(-\vec{k})+\pi(\vec{k}) \phi(-\vec{k})]}
\end{array}
$$

cMERA: free massive scalar theory

- We find

$$
M=\sqrt{\Lambda^{2}+m^{2}}
$$

$K(s)=\int d^{d} \vec{k}\left[\frac{1}{4} \theta\left(1-\frac{|\vec{k}|}{\Lambda}\right)-\frac{1}{8} \log \left(\frac{\vec{k}^{2}+e^{-2 s} m^{2}}{\Lambda^{2}+m^{2}}\right) \frac{|\vec{k}|}{\Lambda} \theta^{\prime}\left(1-\frac{|\vec{k}|}{\Lambda}\right)\right] \times$

$$
[\phi(\vec{k}) \pi(-\vec{k})+\pi(\vec{k}) \phi(-\vec{k})]
$$

- first term: squeeze on all modes for $|\vec{k}| \leq \Lambda$ in position space: rapid decay for $|x-y| \lesssim \Lambda^{-1}$

cMERA: free massive scalar theory

- We find

$$
M=\sqrt{\Lambda^{2}+m^{2}}
$$

$$
K(s)=\int d^{d} \vec{k}\left[\frac{1}{4} \theta\left(1-\frac{|\vec{k}|}{\Lambda}\right)-\frac{1}{8} \log \left(\frac{\vec{k}^{2}+e^{-2 s} m^{2}}{\Lambda^{2}+m^{2}}\right) \frac{|\vec{k}|}{\Lambda} \theta^{\prime}\left(1-\frac{|\vec{k}|}{\Lambda}\right)\right] \times
$$

$$
[\phi(\vec{k}) \pi(-\vec{k})+\pi(\vec{k}) \phi(-\vec{k})]
$$

- first term: squeeze on all modes for $|\vec{k}| \leq \Lambda$ in position space: rapid decay for $|x-y| \lesssim \Lambda^{-1}$
- second term: peaked around $|\vec{k}|=\Lambda$, in position space: non-negligible for scales $\Lambda^{-1} \sim\left(m e^{-u}\right)^{-1}$

cMERA: free massive scalar theory

- We find

$$
M=\sqrt{\Lambda^{2}+m^{2}}
$$

$$
K(s)=\int d^{d} \vec{k}\left[\frac{1}{4} \theta\left(1-\frac{|\vec{k}|}{\Lambda}\right)-\frac{1}{8} \log \left(\frac{\vec{k}^{2}+e^{-2 s} m^{2}}{\Lambda^{2}+m^{2}}\right) \frac{|\vec{k}|}{\Lambda} \theta^{\prime}\left(1-\frac{|\vec{k}|}{\Lambda}\right)\right] \times
$$

$$
[\phi(\vec{k}) \pi(-\vec{k})+\pi(\vec{k}) \phi(-\vec{k})]
$$

- first term: squeeze on all modes for $|\vec{k}| \leq \Lambda$ in position space: rapid decay for $|x-y| \lesssim \Lambda^{-1}$
- second term: peaked around $|\vec{k}|=\Lambda$, in position space: non-negligible for scales $\Lambda^{-1} \sim\left(m e^{-u}\right)^{-1}$
- Different from the previous one [Haegeman et. al. '11]: it gives the right state at any scale

$(d+1)$-dim φ^{4} Theory

- Lets focus on

$$
H=\int d^{d} x\left[\frac{1}{2}\left(\hat{\pi}(x)^{2}+\hat{\phi}(x)\left(-\nabla^{2}+m^{2}\right) \hat{\phi}(x)\right)+\frac{\lambda}{4!} \hat{\phi}(x)^{4}\right]
$$

- In momentum space we have

$$
\begin{aligned}
H^{\Lambda}=\frac{1}{2} & \int^{\Lambda} d^{d} k\left(\hat{\pi}(k) \hat{\pi}(-k)+\hat{\phi}(k)\left(k^{2}+m^{2}\right) \hat{\phi}(-k)\right) \\
& +\frac{\lambda}{4!} \frac{1}{(2 \pi)^{d}} \int^{\Lambda} d^{d} k_{1} d^{d} k_{2} d^{d} k_{3} \hat{\phi}\left(k_{1}\right) \hat{\phi}\left(k_{2}\right) \hat{\phi}\left(k_{3}\right) \hat{\phi}\left(-k_{1}-k_{2}-k_{3}\right)
\end{aligned}
$$

Vacuum State Wave-functional of φ^{4} Theory

- The $\mathcal{O}(\lambda)$ vacuum wave-functional is given by [Hatfield '91]

$$
\left\langle\phi \mid \Psi_{\Lambda}\right\rangle=\mathcal{N} \exp \left(-G[\phi]-\delta m^{2} R_{1}[\phi]-\lambda R_{2}[\phi]\right)+\mathcal{O}\left(\lambda^{2}\right)
$$

Vacuum State Wave-functional of φ^{4} Theory

- The $\mathcal{O}(\lambda)$ vacuum wave-functional is given by [Hatfield '91]

$$
\left\langle\phi \mid \Psi_{\Lambda}\right\rangle=\mathcal{N} \exp \left(-G[\phi]-\delta m^{2} R_{1}[\phi]-\lambda R_{2}[\phi]\right)+\mathcal{O}\left(\lambda^{2}\right)
$$

where

$$
\begin{aligned}
G[\phi] & =\frac{1}{2} \int^{\Lambda} d^{d} k \phi(k) \omega_{k} \phi(-k), \quad \delta m^{2}=\frac{\lambda}{2} \int_{\Lambda e^{u}}^{\Lambda} \frac{d^{d} \vec{p}}{(2 \pi)^{d}} \frac{1}{\vec{p}^{2}+m^{2}}, \\
R_{1}[\phi] & =\frac{1}{4} \int^{\Lambda} d^{d} k \frac{1}{\omega_{k}} \phi(k) \phi(-k), \\
R_{2}[\phi] & =\frac{1}{16} \int^{\Lambda} d^{d} k \frac{1}{\omega_{k}}\left(\int^{\Lambda} \frac{d^{d} q}{(2 \pi)^{d}} \frac{1}{\omega_{k}+\omega_{q}}\right) \phi(k) \phi(-k)
\end{aligned}
$$

$$
+\frac{1}{24} \frac{1}{(2 \pi)^{d}} \int^{\Lambda} \frac{d^{d} k_{1} d^{d} k_{2} d^{d} k_{3}}{\omega_{k_{1}}+\omega_{k_{2}}+\omega_{k_{3}}+\omega_{-k_{1}-k_{2}-k_{3}}} \phi\left(k_{1}\right) \phi\left(k_{2}\right) \phi\left(k_{3}\right) \phi\left(-k_{1}-k_{2}-k_{3}\right)
$$

What is the Corresponding Circuit?

- Non-trivial kernels are

$$
\begin{aligned}
& K(s)=\int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} f_{2,0}\left(\vec{x}_{1}, \vec{x}_{2} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right)+\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right)\right] \\
& \quad+\lambda \int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} f_{2,1}\left(\vec{x}_{1}, \vec{x}_{2} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right)+\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right)\right] \\
& \quad+\lambda \int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} d^{d} \vec{x}_{3} d^{d} \vec{x}_{4} \times \\
& \left(f_{4}^{(1)}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right) \pi\left(\vec{x}_{3}\right) \pi\left(\vec{x}_{4}\right)+\pi\left(\vec{x}_{2}\right) \pi\left(\vec{x}_{3}\right) \pi\left(\vec{x}_{4}\right) \phi\left(\vec{x}_{1}\right)\right]\right. \\
& \left.+f_{4}^{(3)}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; s\right)\left[\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right) \phi\left(\vec{x}_{3}\right) \phi\left(\vec{x}_{4}\right)+\phi\left(\vec{x}_{2}\right) \phi\left(\vec{x}_{3}\right) \phi\left(\vec{x}_{4}\right) \pi\left(\vec{x}_{1}\right)\right]\right)
\end{aligned}
$$

What is the Corresponding Circuit?

- Non-trivial kernels are

$$
\begin{aligned}
& K(s)=\int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} f_{2,0}\left(\vec{x}_{1}, \vec{x}_{2} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right)+\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right)\right] \\
& \quad+\lambda \int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} f_{2,1}\left(\vec{x}_{1}, \vec{x}_{2} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right)+\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right)\right] \\
& \quad+\lambda \int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} d^{d} \vec{x}_{3} d^{d} \vec{x}_{4} \times \\
& \left(f_{4}^{(1)}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right) \pi\left(\vec{x}_{3}\right) \pi\left(\vec{x}_{4}\right)+\pi\left(\vec{x}_{2}\right) \pi\left(\vec{x}_{3}\right) \pi\left(\vec{x}_{4}\right) \phi\left(\vec{x}_{1}\right)\right]\right. \\
& \left.+f_{4}^{(3)}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; s\right)\left[\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right) \phi\left(\vec{x}_{3}\right) \phi\left(\vec{x}_{4}\right)+\phi\left(\vec{x}_{2}\right) \phi\left(\vec{x}_{3}\right) \phi\left(\vec{x}_{4}\right) \pi\left(\vec{x}_{1}\right)\right]\right)
\end{aligned}
$$

- The explicit forms are long (see our paper)

What is the Corresponding Circuit?

- Non-trivial kernels are

$$
\begin{aligned}
& K(s)=\int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} f_{2,0}\left(\vec{x}_{1}, \vec{x}_{2} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right)+\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right)\right] \\
& \quad+\lambda \int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} f_{2,1}\left(\vec{x}_{1}, \vec{x}_{2} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right)+\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right)\right] \\
& \quad+\lambda \int d^{d} \vec{x}_{1} d^{d} \vec{x}_{2} d^{d} \vec{x}_{3} d^{d} \vec{x}_{4} \times \\
& \left(f_{4}^{(1)}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; s\right)\left[\phi\left(\vec{x}_{1}\right) \pi\left(\vec{x}_{2}\right) \pi\left(\vec{x}_{3}\right) \pi\left(\vec{x}_{4}\right)+\pi\left(\vec{x}_{2}\right) \pi\left(\vec{x}_{3}\right) \pi\left(\vec{x}_{4}\right) \phi\left(\vec{x}_{1}\right)\right]\right. \\
& \left.+f_{4}^{(3)}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; s\right)\left[\pi\left(\vec{x}_{1}\right) \phi\left(\vec{x}_{2}\right) \phi\left(\vec{x}_{3}\right) \phi\left(\vec{x}_{4}\right)+\phi\left(\vec{x}_{2}\right) \phi\left(\vec{x}_{3}\right) \phi\left(\vec{x}_{4}\right) \pi\left(\vec{x}_{1}\right)\right]\right)
\end{aligned}
$$

- The explicit forms are long (see our paper)
- (Using Fourier-analytic arguments) We prove that they are local

Lessons for φ^{4} Theory

- Quantum circuit perturbation theory lead to exact perturbative kernels

Lessons for φ^{4} Theory

- Quantum circuit perturbation theory lead to exact perturbative kernels
- The kernels are translation invariant and local in position space

Lessons for φ^{4} Theory

- Quantum circuit perturbation theory lead to exact perturbative kernels
- The kernels are translation invariant and local in position space
- What do we mean by local:
- for massive theories the quadratic kernels fall off faster than

$$
e^{-m e^{-u}\left|x_{1}-x_{2}\right|}
$$

- for massive theories the quartic kernels fall-off faster than

$$
e^{-e^{-u} m\left(\left|\vec{x}_{1}-\vec{x}_{2}\right|+\left|\vec{x}_{1}-\vec{x}_{3}\right|+\left|\vec{x}_{1}-\vec{x}_{4}\right|+\left|\vec{x}_{2}-\vec{x}_{3}\right|+\left|\vec{x}_{2}-\vec{x}_{4}\right|+\left|\vec{x}_{3}-\vec{x}_{4}\right|\right)}
$$

- for massless theories the kernels fall-off polynomially

Lessons for φ^{4} Theory

- Quantum circuit perturbation theory lead to exact perturbative kernels
- The kernels are translation invariant and local in position space
- What do we mean by local:
- for massive theories the quadratic kernels fall off faster than

$$
e^{-m e^{-u}\left|x_{1}-x_{2}\right|}
$$

- for massive theories the quartic kernels fall-off faster than

$$
e^{-e^{-u} m\left(\left|\vec{x}_{1}-\vec{x}_{2}\right|+\left|\vec{x}_{1}-\vec{x}_{3}\right|+\left|\vec{x}_{1}-\vec{x}_{4}\right|+\left|\vec{x}_{2}-\vec{x}_{3}\right|+\left|\vec{x}_{2}-\vec{x}_{4}\right|+\left|\vec{x}_{3}-\vec{x}_{4}\right|\right)}
$$

- for massless theories the kernels fall-off polynomially Important (perturbative) Lesson

Summary \& Outlook

- Summary
- TN's as powerful tools to study low energy physics
- MPS as a pedagogical example to see how the scaling of parameters suppresses from exponential to linear
- Quantum circuit perturbation theory
- Work out cMERA kernels exactly up to any order in perturbation theory
- Explicitly for d-dim φ^{4} scalar theory
- Wilsonian RG can be re-expressed as local cMERA in position space
- Outlook
- (Non-perturbative) numerical approach for ground state of field theories
- cMERA circuit for fermions and (non-)Abelian gauge theories
- In principle application to strongly interacting theories

