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Introduction

▸ It is more than a decade that quantum information theory
is playing an important role in the evolution of high energy
and condensed matter physics

▸ This has lead to many new insights including:
▸ Quantum Gravity: BH evaporation, connections between

entanglement and geometry, AdS/CFT as a QECC,
quantum chaos and information scrambling, ...

▸ Condensed Matter Physics: probing topological order by
entanglement, classification of topological phases (in low
dim), ...

▸ Quantum Circuit Complexity: Holographic Complexity,
Complexity in QFTs, ...
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Why Tensor Networks?

▸ Tensor networks are useful tools doing many-body physics,
in the context of condensed matter or high energy

▸ Applications in a wide range of problems, e.g.:
▸ the complete phase diagram of Hubbard model
▸ QCD phase diagram in 2+1 dim

▸ Physical intuition behind TN program: to study local
observables such as correclation functions, it is much more
economic to have a way to effectively bring in the effect of
far away dof’s instead of having the wave function
everywhere

▸ Introducing entanglement dof’s, TNs offer concrete ways to
bring in the affect of far dof’s into correlations inside a
local region
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TN’s Guiding Principle

▸ The big problem dealing with many-body systems is the
exponentially large Hilbert space which makes it extremely
hard to find the ground state and low energy physics

▸ The guiding principle is that in a local theory the physical
states of interest have a very low amount of entanglement

▸ The simplest case is 2d CFT. If we pick up a random state
in the Hilbert space of a lattice version, the entropy of a
block is proportional to the block size but the
entanglement entropy scales with the logarithm of the
block size which is exponentially smaller.

▸ Physical states of interest leave in a corner of the Hilbert
space with exponentially suppressed entropy corresponding
to entanglement between subsystems.
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Simplest Example: MPS states

▸ In the physical corner the specific property of the states is
that whatever the region of interest is, a very few dof’s are
entangled with the complement

▸ One may think that considering entanglement across the
boundary of the region would be enough to construct such
a state

..⋯. ⋯

▸ But even a generalized version of such a state does not
respect translational symmetry

..⋯. ⋯
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Simplest Example: MPS states
▸ We introduce ‘partons’ for each dof

..⋯ . ⋯

each entangled pair partons are in a maximally entangled
state in a D-dim Hilbert space (∣b⟩). Now we have the same
amount of entanglement for any cut

▸ To make it rich enough we project to the original dof’s

..

P1

.

P2

.

P3

.

P4

.

P5

.

P6

.

P7

.⋯ . ⋯

Pi ∶ CD ⊗CD → Cd

▸ We have constructed the state as

∣Ψ⟩ =
N
⊗
i=1

Pi ⋅ ∣b⟩⊗N
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Simplest Example: MPS states
▸ The aim was to find an explicit expression for ci1,⋯,iN in

∣Ψ⟩ =∑ ci1,⋯,iN ∣i1,⋯, iN ⟩

=
N
⊗
i=1

Pi ⋅ ∣b⟩⊗N

The projection can be expanded as

Pi = ∑
αi ,βi=1,⋯,D

r=1,⋯,d

A(i),rαiβi
∣r⟩⟨αi , βi ∣ , ∣b⟩ = 1√

D

D
∑
k=1
∣k, k⟩

▸ For a translational invariant systems this leads to

ci1,⋯,iN = Tr [A(1),i1A(2),i2⋯A(N),iN ]

▸ The number of parameters instead of dN is linear in N ,
namely

N ⋅ d ⋅D2
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Outline

MERA: Brief Introduction
Overview of MERA
Overview of cMERA
Spatial Wilsonian RG

Wilsonian RG cMERA Circuits
(0+1)-dim Quantum Circuit Perturbation Theory
RG cMERA Circuit: Free Massive Theory
RG cMERA Circuit: φ4 Theory



Sketch of the Ideas

▸ The two key tools in this talk are:

▸ Quantum Circuits (a sequence of unitaries)

▸ Tensor Networks

▸ Ideas:

1. Reformulation of Dynamics: One may think about
unitary dynamics as a quantum circuit which entangles
local dof’s of a state

2. Reformulation of Renormalization Group: One can
think of renormalization group flow as a sequence of local
gates which disentangle and isometries which coarse grain
local dof’s of a state
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MERA: quick introduction
▸ MERA: an upgrade of Kadanoff’s block spin

renormalization with quantum-information theory

▸ MERA is defined by isometry and Disentangler [Vidal ’05]

..
disentangler

.

isometry

▸ isometry: Nu = N0 ⋅ 2u

..u = 0 .
u = −1

.

u = −2

.

u = −3

.

u = −4

▸ The scale of interest is parametrised as u = 0
▸ The entanglement free state where the layered structure

ends is called u = uIR
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MERA: Top-down & Bottom-up

▸ Top-down procedure

1. Disentangle local dof’s of input state ∣ΨUV⟩ with a unitary

2. Coarse grain to a smaller lattice

3. Iterate until the resultant state has no entanglement ∣ΨIR⟩

4. We have ∣ΨIR⟩ = TMERA∣ΨUV⟩

▸ Bottom-up (variational problem)

1. take an IR state ∣ΨIR⟩

2. Run the network backward on ∣ΨIR⟩, T †
MERA∣ΨIR⟩

T †
MERA is parametrized such that the ground state energy is

minimized

3. Let ∣ΨUV⟩ = T †
MERA∣ΨIR⟩
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cMERA [Haegeman-Osborne-Verschelde-Verstraete ’11]

▸ Suppose a simple IR state ∣Ω⟩ ∈H
Progressively build correlations at finer scales

▸ The IR state is scale invariant (has no spatial entanglement)

L∣Ω⟩ = 0

L is non-relativistic scaling operator
▸ At generic length scale Λeu we have

∣ΨΛeu

cMERA⟩ = Ps exp(−i ∫
u

uIR
ds (K(s) + L)) ∣Ω⟩

▸ u → 0 corresponds to UV scale (−∞ < u < 0)
▸ Question: How to find K(u)?
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How to determine K(u)?

▸ For free theories by solving

δ⟨Ψ(u)∣H (u)∣Ψ(u)⟩
δK(u)

= 0
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▸ Very difficult to generalize to interacting theories

▸ Our steps to get around this problem:
1. Understand connection between Wilsonian RG and tensor

networks
2. Develop an analytic approach (quantum circuit

perturbation theory)
3. Express Wilsonian RG as spatially local cMERA circuit

(it turns out that perturbative Wilsonian RG yields a local
K(s))
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Spatial Wilsonian RG

▸ The Hilbert space

HΛ =HΛeu
⊗HΛeu<∣p⃗∣≤Λ

▸ To integrate out spatial modes (similarly for π(p⃗, t))

ϕ(p⃗, t) =
⎧⎪⎪⎨⎪⎪⎩

ϕ<(p⃗, t) if ∣p⃗∣ ≤ Λeu

ϕ>(p⃗, t) if Λeu < ∣p⃗∣ ≤ Λ

▸ The partition function

ZΛ[{Ji(p⃗)}] =

lim
T→∞(1−iϵ)

∫ ∏
∣p⃗∣≤Λ
DϕDπ ei ∫

T
−T dt(∫

Λ dd p⃗[πϕ̇−H Λ])e−i ∫
Λ dd p⃗ ∑i Ji(p⃗)Oi(p⃗,0)
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Bender-Dunne Basis

▸ (Weyl-ordered) Bender-Dunne basis [’89]:

Tm,n ∶=
1
2n

n
∑
k=0
(n

k
) xkpmxn−k = 1

2m

m
∑
j=0
(m

j
)pjxnpm−j

▸ In general Tm,n is defined for −∞ < m, n <∞.
▸ We consider the generic unitary as

U = exp
⎧⎪⎪⎨⎪⎪⎩

i
∞
∑

m,n=0
cm,n Tm,n

⎫⎪⎪⎬⎪⎪⎭
▸ Q: When is the RHS a sum of finitely many terms?

exp
⎧⎪⎪⎨⎪⎪⎩

i
N1

∑
m,n=0

c(1)m,n Tm,n

⎫⎪⎪⎬⎪⎪⎭
exp
⎧⎪⎪⎨⎪⎪⎩

i
N2

∑
m,n=0

c(2)m,n Tm,n

⎫⎪⎪⎬⎪⎪⎭
= exp

⎧⎪⎪⎨⎪⎪⎩
i
∞
∑

m,n=0
cm,n Tm,n

⎫⎪⎪⎬⎪⎪⎭
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Circuits in QMs

▸ A: If c(1)m,n = 0 , c(2)m,n = 0 for m + n > 2

▸ What we learn is that for

U1U2⋯Un = U = eiQ

we can determine Q if all Qi ’s are at most quadratic.

▸ Q: How to deal with higher orders?
▸ A: A very special case (order: largest m + n)

[order 2, order k] ≤ order k

▸ This means

ei(Q(1)2 +ϵQ(1)k )ei(Q(2)2 +ϵQ(2)k ) = ei(Q2+ϵQk) +O(ϵ2)
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Continuum Circuits & Perturbation Theory
▸ Consider

U = exp
⎛
⎝
−i ∑

0≤p+q≤M
cp,q Tp,q

⎞
⎠

but with the following form

U = exp
⎛
⎝
−i
⎛
⎝ ∑p+q ≤2

cp,q Tp,q + ϵ ∑
2< r+s ≤M

cr ,s Tr ,s
⎞
⎠
⎞
⎠

≡ exp (−i (Q2 + ϵQhigher))

▸ It is not hard to show that

U = (1 + ϵ
e−i adQ2 − 1

adQ2

Qhigher) e−i Q2 +O(ϵ2)

▸ Remember that the O(ϵ) term is at most of order M
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cMERA: free massive scalar theory

▸ Starting with

⟨ϕ∣Ω⟩ = N exp(−1
2 ∫

dd x⃗ ϕ(x⃗)M ϕ(x⃗))

▸ Determine what K(s) needs to be such that

⟨ϕ∣Ps e−i ∫
u
−∞ ds (K(s)+L)∣Ω⟩ =

N exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1
2 ∫

Λ
dd k⃗ ϕ(k⃗)

√
k⃗2 + e−2um2 ϕ(−⃗k) − 1

2 ∫
∞

Λ
dd k⃗ ϕ(k⃗)M ϕ(−k⃗)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
leftover, unused modes

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭



cMERA: free massive scalar theory

▸ We find

M =
√

Λ2 +m2

K(s) = ∫ dd k⃗ [1
4

θ (1 − ∣k⃗ ∣
Λ
) − 1

8
log( k⃗2 + e−2sm2

Λ2 +m2 ) ∣k⃗ ∣
Λ

θ′ (1 − ∣k⃗ ∣
Λ
)]×

[ϕ(k⃗)π(−k⃗) + π(k⃗)ϕ(−k⃗)]

▸ first term: squeeze on all modes for ∣k⃗ ∣ ≤ Λ
in position space: rapid decay for ∣x − y∣ ≲ Λ−1

▸ second term: peaked around ∣k⃗ ∣ = Λ,
in position space: non-negligible for scales Λ−1 ∼ (me−u)−1

▸ Different from the previous one [Haegeman et. al. ’11]: it gives
the right state at any scale
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(d+1)-dim φ4 Theory

▸ Lets focus on

H = ∫ ddx [1
2
(π̂(x)2 + ϕ̂(x) (−∇2 +m2) ϕ̂(x)) + λ

4!
ϕ̂(x)4]

▸ In momentum space we have

H Λ = 1
2 ∫

Λ
ddk (π̂(k)π̂(−k) + ϕ̂(k) (k2 +m2) ϕ̂(−k))

+ λ

4!
1
(2π)d ∫

Λ
ddk1 ddk2 ddk3 ϕ̂(k1)ϕ̂(k2)ϕ̂(k3)ϕ̂(−k1 − k2 − k3)



Vacuum State Wave-functional of φ4 Theory

▸ The O(λ) vacuum wave-functional is given by [Hatfield ’91]

⟨ϕ∣ΨΛ⟩ = N exp (−G[ϕ] − δm2 R1[ϕ] − λ R2[ϕ]) +O(λ2)

where

G[ϕ] = 1
2 ∫

Λ
ddk ϕ(k)ωk ϕ(−k), δm2 = λ

2 ∫
Λ

Λeu

dd p⃗
(2π)d

1
p⃗2 +m2 ,

R1[ϕ] =
1
4 ∫

Λ
ddk 1

ωk
ϕ(k)ϕ(−k),

R2[ϕ] =
1
16 ∫

Λ
ddk 1

ωk
(∫

Λ ddq
(2π)d

1
ωk + ωq

) ϕ(k)ϕ(−k)

+ 1
24

1
(2π)d ∫

Λ ddk1 ddk2 ddk3
ωk1 + ωk2 + ωk3 + ω−k1−k2−k3

ϕ(k1)ϕ(k2)ϕ(k3)ϕ(−k1 − k2 − k3)



Vacuum State Wave-functional of φ4 Theory

▸ The O(λ) vacuum wave-functional is given by [Hatfield ’91]

⟨ϕ∣ΨΛ⟩ = N exp (−G[ϕ] − δm2 R1[ϕ] − λ R2[ϕ]) +O(λ2)

where

G[ϕ] = 1
2 ∫

Λ
ddk ϕ(k)ωk ϕ(−k), δm2 = λ

2 ∫
Λ

Λeu

dd p⃗
(2π)d

1
p⃗2 +m2 ,

R1[ϕ] =
1
4 ∫

Λ
ddk 1

ωk
ϕ(k)ϕ(−k),

R2[ϕ] =
1
16 ∫

Λ
ddk 1

ωk
(∫

Λ ddq
(2π)d

1
ωk + ωq

) ϕ(k)ϕ(−k)

+ 1
24

1
(2π)d ∫

Λ ddk1 ddk2 ddk3
ωk1 + ωk2 + ωk3 + ω−k1−k2−k3

ϕ(k1)ϕ(k2)ϕ(k3)ϕ(−k1 − k2 − k3)



What is the Corresponding Circuit?

▸ Non-trivial kernels are

K(s) = ∫ dd x⃗1 dd x⃗2 f2,0(x⃗1, x⃗2; s) [ϕ(x⃗1)π(x⃗2) + π(x⃗1)ϕ(x⃗2)]

+ λ∫ dd x⃗1 dd x⃗2 f2,1(x⃗1, x⃗2; s) [ϕ(x⃗1)π(x⃗2) + π(x⃗1)ϕ(x⃗2)]

+ λ∫ dd x⃗1 dd x⃗2dd x⃗3 dd x⃗4×

(f (1)4 (x⃗1, x⃗2, x⃗3, x⃗4; s) [ϕ(x⃗1)π(x⃗2)π(x⃗3)π(x⃗4) + π(x⃗2)π(x⃗3)π(x⃗4)ϕ(x⃗1)]

+ f (3)4 (x⃗1, x⃗2, x⃗3, x⃗4; s) [π(x⃗1)ϕ(x⃗2)ϕ(x⃗3)ϕ(x⃗4) + ϕ(x⃗2)ϕ(x⃗3)ϕ(x⃗4)π(x⃗1)] )
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What is the Corresponding Circuit?
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Lessons for φ4 Theory
▸ Quantum circuit perturbation theory lead to exact

perturbative kernels

▸ The kernels are translation invariant and local in position
space

▸ What do we mean by local:
▸ for massive theories the quadratic kernels fall off faster than

e−m e−u ∣x1−x2∣

▸ for massive theories the quartic kernels fall-off faster than

e−e−um(∣x⃗1−x⃗2∣+∣x⃗1−x⃗3∣+∣x⃗1−x⃗4∣+∣x⃗2−x⃗3∣+∣x⃗2−x⃗4∣+∣x⃗3−x⃗4∣)

▸ for massless theories the kernels fall-off polynomially

Important (perturbative) Lesson

Spatial Wilsonian RG = Local cMERA circuit
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Summary & Outlook

▸ Summary
▸ TN’s as powerful tools to study low energy physics
▸ MPS as a pedagogical example to see how the scaling of

parameters suppresses from exponential to linear

▸ Quantum circuit perturbation theory
▸ Work out cMERA kernels exactly up to any order in

perturbation theory
▸ Explicitly for d-dim φ4 scalar theory
▸ Wilsonian RG can be re-expressed as local cMERA in position

space
▸ Outlook

▸ (Non-perturbative) numerical approach for ground state of field
theories

▸ cMERA circuit for fermions and (non-)Abelian gauge theories
▸ In principle application to strongly interacting theories
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