Strolling along gravitational vacua

Ali Seraj

Universit Libre de Bruxelles

Recent Trends in String theory, Tehran, April 2019

Motivation

- Gauge symmetries in the presence of boundaries

Motivation

- Gauge symmetries in the presence of boundaries
- Well known results in gravity, holography, Chern-Simons, Quantum Hall effect, QED etc. [Regge, Teitelboim],[Brown-Henneaux] [Bondi, Metzner,Sachs]

Motivation

- Gauge symmetries in the presence of boundaries
- Well known results in gravity, holography, Chern-Simons, Quantum Hall effect, QED etc. [Regge, Teitelboim],[Brown-Henneaux] [Bondi, Metzner,Sachs]
- Strominger's infrared triangle

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries
- Vacuum: minimum energy configuration

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries
- Vacuum: minimum energy configuration
- Broken symmetries and degenerate vacua $\mathcal{G}: \quad \phi_{0}^{v a c} \rightarrow \phi_{g}^{v a c}$

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries
- Vacuum: minimum energy configuration
- Broken symmetries and degenerate vacua $\mathcal{L}: \quad \phi_{0}^{v a c} \rightarrow \phi_{g}^{v a c}$
- Degenerate space of vacua $\mathcal{V}=\left\{\phi_{g}^{\text {vac }}\right\}$

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries
- Vacuum: minimum energy configuration
- Broken symmetries and degenerate vacua $\mathcal{L}: \quad \phi_{0}^{v a c} \rightarrow \phi_{g}^{v a c}$
- Degenerate space of vacua $\mathcal{V}=\left\{\phi_{g}^{v a c}\right\}$

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries
- Vacuum: minimum energy configuration
- Broken symmetries and degenerate vacua $\mathcal{L}: \quad \phi_{0}^{v a c} \rightarrow \phi_{g}^{v a c}$
- Degenerate space of vacua $\mathcal{V}=\left\{\phi_{g}^{v a c}\right\}$

- Zero modes vs normal modes

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries
- Vacuum: minimum energy configuration
- Broken symmetries and degenerate vacua $\mathcal{L}: \quad \phi_{0}^{v a c} \rightarrow \phi_{g}^{v a c}$
- Degenerate space of vacua $\mathcal{V}=\left\{\phi_{g}^{v a c}\right\}$

- Zero modes vs normal modes
- Adiabatic (Manton) approximation [Manton '82, Stuart '07]

Motivation: Degenerate vacua

- Large gauge symmetries: Physical subset of gauge symmetries
- Vacuum: minimum energy configuration
- Broken symmetries and degenerate vacua $\mathcal{L}: \quad \phi_{0}^{v a c} \rightarrow \phi_{g}^{v a c}$
- Degenerate space of vacua $\mathcal{V}=\left\{\phi_{g}^{v a c}\right\}$

- Zero modes vs normal modes
- Adiabatic (Manton) approximation [Manton '82, Stuart '07]

Table of contents

1. Warm-up: Particle theory
2. Maxwell theory and its vacua
3. Gravitational vacua and low energy dynamics

Warm-up: Particle theory

Particle theory

- Lagrangian

$$
L=\frac{1}{2} g_{I J}(X) \dot{X}^{I} \dot{X}^{J}-V\left(X^{I}\right)
$$

Particle theory

- Lagrangian

$$
L=\frac{m}{2} \dot{X}^{I} \dot{X}_{I}-\frac{1}{2}\left(X^{I} X_{I}-R^{2}\right)^{2}
$$

Particle theory

- Lagrangian

$$
L=\frac{m}{2} \dot{X}^{I} \dot{X}_{I}-\frac{1}{2}\left(X^{I} X_{I}-R^{2}\right)^{2}
$$

- Configuration space $\mathcal{C}=\left\{X^{I}\right\}$

Particle theory

- Lagrangian

$$
L=\frac{m}{2} \dot{X}^{I} \dot{X}_{I}-\frac{1}{2}\left(X^{I} X_{I}-R^{2}\right)^{2}
$$

- Configuration space $\mathcal{C}=\left\{X^{I}\right\}$
- Space of vacua $\mathcal{V}=S^{2}=S O(3) / S O(2)$

Particle theory

- Lagrangian

$$
L=\frac{m}{2} \dot{X}^{I} \dot{X}_{I}-\frac{1}{2}\left(X^{I} X_{I}-R^{2}\right)^{2}
$$

- Configuration space $\mathcal{C}=\left\{X^{I}\right\}$
- Space of vacua $\mathcal{V}=S^{2}=S O(3) / S O(2)$
- Spherical coordinates $\left(R+\rho, z^{\alpha}\right)$

$$
\begin{aligned}
(R+\rho)\left(\ddot{z}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} \dot{z}^{\beta} \dot{z}^{\gamma}\right)+2 \dot{\rho} \dot{z}^{\alpha} & =0 \\
\ddot{\rho}+\frac{4}{m} \rho(\rho+2 R)(\rho+R)-(R+\rho) g_{\alpha \beta} \dot{z}^{\alpha} \dot{z}^{\beta} & =0
\end{aligned}
$$

Adiabatic limit

- To realize the adiabatic limit, redefine

$$
\tau=\epsilon t, \quad \epsilon \ll 1
$$

Adiabatic limit

- To realize the adiabatic limit, redefine

$$
\tau=\epsilon t, \quad \epsilon \ll 1
$$

- Replace in e.o.m

$$
\frac{d}{d t} \rightarrow \epsilon \frac{d}{d \tau}
$$

Adiabatic limit

- To realize the adiabatic limit, redefine

$$
\tau=\epsilon t, \quad \epsilon \ll 1
$$

- Replace in e.o.m

$$
\frac{d}{d t} \rightarrow \epsilon \frac{d}{d \tau}
$$

- Normal mode equation

$$
\rho=\mathcal{O}\left(\epsilon^{2}\right)
$$

Adiabatic limit

- To realize the adiabatic limit, redefine

$$
\tau=\epsilon t, \quad \epsilon \ll 1
$$

- Replace in e.o.m

$$
\frac{d}{d t} \rightarrow \epsilon \frac{d}{d \tau}
$$

- Normal mode equation

$$
\rho=\mathcal{O}\left(\epsilon^{2}\right)
$$

- Zero mode equations

$$
\ddot{z}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} \dot{z}^{\beta} \dot{z}^{\gamma}=0+\mathcal{O}\left(\epsilon^{2}\right)
$$

Adiabatic limit

- To realize the adiabatic limit, redefine

$$
\tau=\epsilon t, \quad \epsilon \ll 1
$$

- Replace in e.o.m

$$
\frac{d}{d t} \rightarrow \epsilon \frac{d}{d \tau}
$$

- Normal mode equation

$$
\rho=\mathcal{O}\left(\epsilon^{2}\right)
$$

- Zero mode equations

$$
\ddot{z}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} \dot{z}^{\beta} \dot{z}^{\gamma}=0+\mathcal{O}\left(\epsilon^{2}\right)
$$

- Low energy solutions: Geodesics on the space of vacua.

Maxwell theory and its vacua

Configuration space and its metric

- Temporal gauge $A_{0}=0$

$$
L\left[A_{i}\right]=\frac{1}{2} \int d^{3} x\left(g^{i j} \dot{A}_{i} \dot{A}_{j}-F_{i j} F^{i j}\right)
$$

Configuration space and its metric

- Temporal gauge $A_{0}=0$

$$
L\left[A_{i}\right]=\frac{1}{2} \int d^{3} x\left(g^{i j} \dot{A}_{i} \dot{A}_{j}-F_{i j} F^{i j}\right)
$$

- together with the Gauss constraint

$$
\partial_{i} \dot{A}^{i}=0
$$

Configuration space and its metric

- Temporal gauge $A_{0}=0$

$$
L\left[A_{i}\right]=\frac{1}{2} \int d^{3} x\left(g^{i j} \dot{A}_{i} \dot{A}_{j}-F_{i j} F^{i j}\right)
$$

- together with the Gauss constraint

$$
\partial_{i} \dot{A}^{i}=0
$$

- Configuration space $\mathcal{C}=\{A(x)\}$

Configuration space and its metric

- Temporal gauge $A_{0}=0$

$$
L\left[A_{i}\right]=\frac{1}{2} \int d^{3} x\left(g^{i j} \dot{A}_{i} \dot{A}_{j}-F_{i j} F^{i j}\right)
$$

- together with the Gauss constraint

$$
\partial_{i} \dot{A}^{i}=0
$$

- Configuration space $\mathcal{C}=\{A(x)\}$
- Time dependent solutions as curves

Configuration space and its metric

- Temporal gauge $A_{0}=0$

$$
L\left[A_{i}\right]=\frac{1}{2} \int d^{3} x\left(g^{i j} \dot{A}_{i} \dot{A}_{j}-F_{i j} F^{i j}\right)
$$

- together with the Gauss constraint

$$
\partial_{i} \dot{A}^{i}=0
$$

- Configuration space $\mathcal{C}=\{A(x)\}$
- Time dependent solutions as curves
- Electric field as the tangent vector

Configuration space and its metric

- Temporal gauge $A_{0}=0$

$$
L\left[A_{i}\right]=\frac{1}{2} \int d^{3} x\left(g^{i j} \dot{A}_{i} \dot{A}_{j}-F_{i j} F^{i j}\right)
$$

- together with the Gauss constraint

$$
\partial_{i} \dot{A}^{i}=0
$$

- Configuration space $\mathcal{C}=\{A(x)\}$
- Time dependent solutions as curves
- Electric field as the tangent vector

- Metric on the configuration space

$$
g\left(\delta_{1} A, \delta_{2} A\right)=\int d^{3} x \operatorname{Tr} \delta_{1} A_{i} \delta_{2} A^{i}
$$

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

- Generated by gauge symmetries $\mathcal{V}=\mathcal{L} \cdot A_{\text {ref }}$

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

- Generated by gauge symmetries $\mathcal{V}=\mathcal{L} \cdot A_{\text {ref }}$
- Expanded in a complete basis $\phi=z^{\alpha} \phi_{\alpha}(x)$

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

- Generated by gauge symmetries $\mathcal{V}=\mathcal{L} \cdot A_{\text {ref }}$
- Expanded in a complete basis $\phi=z^{\alpha} \phi_{\alpha}(x)$
- z^{α} defines a coordinate system on the space of vacua

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

- Generated by gauge symmetries $\mathcal{V}=\mathcal{L} \cdot A_{\text {ref }}$
- Expanded in a complete basis $\phi=z^{\alpha} \phi_{\alpha}(x)$
- z^{α} defines a coordinate system on the space of vacua
- Motion on the space of vacua $\phi(t, x)=z^{\alpha}(t) \phi_{\alpha}(x)$

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

- Generated by gauge symmetries $\mathcal{V}=\mathcal{L} \cdot A_{\text {ref }}$
- Expanded in a complete basis $\phi=z^{\alpha} \phi_{\alpha}(x)$
- z^{α} defines a coordinate system on the space of vacua
- Motion on the space of vacua $\phi(t, x)=z^{\alpha}(t) \phi_{\alpha}(x)$
- Gauss constraint $\nabla \cdot \dot{A}=\dot{z}^{\alpha} \nabla^{2} \phi_{\alpha}=0$

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

- Generated by gauge symmetries $\mathcal{V}=\mathcal{L} \cdot A_{\text {ref }}$
- Expanded in a complete basis $\phi=z^{\alpha} \phi_{\alpha}(x)$
- z^{α} defines a coordinate system on the space of vacua
- Motion on the space of vacua $\phi(t, x)=z^{\alpha}(t) \phi_{\alpha}(x)$
- Gauss constraint $\nabla \cdot \dot{A}=\dot{z}^{\alpha} \nabla^{2} \phi_{\alpha}=0$
- Allowed directions (LGTs)

$$
\phi_{\alpha}=\left(\frac{r}{R}\right)^{\ell} Y_{\ell m} \quad \text { harmonic gauge parameters }
$$

Physical vacua

- Vacuum configurations $\quad \mathcal{V}=\min (V)$

$$
F_{i j}=0 \Longrightarrow A_{i}=\partial_{i} \phi
$$

- Generated by gauge symmetries $\mathcal{V}=\mathcal{G} \cdot A_{\text {ref }}$
- Expanded in a complete basis $\phi=z^{\alpha} \phi_{\alpha}(x)$
- z^{α} defines a coordinate system on the space of vacua
- Motion on the space of vacua $\phi(t, x)=z^{\alpha}(t) \phi_{\alpha}(x)$
- Gauss constraint $\nabla \cdot \dot{A}=\dot{z}^{\alpha} \nabla^{2} \phi_{\alpha}=0$
- Allowed directions (LGTs)

$$
\phi_{\alpha}=\left(\frac{r}{R}\right)^{\ell} Y_{\ell m} \quad \text { harmonic gauge parameters }
$$

- Theorem:
$\mathcal{G}_{\text {harmonic }} \cong \mathcal{G}_{\text {boundary }} \cong \mathcal{G} / \mathcal{G}_{0}$.

Adiabatic solutions

- Geodesic equation

$$
\ddot{z}^{\ell m}(t)=0
$$

$$
E=\dot{A}=\nabla \phi(x), \quad \nabla^{2} \phi=0, \quad B=0
$$

Adiabatic solutions

- Geodesic equation

$$
\ddot{z}^{\ell m}(t)=0
$$

$$
E=\dot{A}=\nabla \phi(x), \quad \nabla^{2} \phi=0, \quad B=0
$$

- Electrostatic solutions (exact)

Adiabatic solutions

- Geodesic equation

$$
\ddot{z}^{\ell m}(t)=0
$$

$$
E=\dot{A}=\nabla \phi(x), \quad \nabla^{2} \phi=0, \quad B=0
$$

- Electrostatic solutions (exact)
- Metric on the space of vacua

$$
\begin{aligned}
\mathrm{g}\left(\nabla \phi_{\ell m}, \nabla \phi_{\ell^{\prime} m^{\prime}}\right) & =\int_{M} \nabla_{i} \phi_{\ell m} \nabla^{i} \phi_{\ell^{\prime} m^{\prime}} \\
& =\oint_{\partial M} \phi_{\ell^{\prime} m^{\prime}} n \cdot \nabla \phi_{\ell m}=\ell \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}}
\end{aligned}
$$

Adiabatic solutions

- Geodesic equation

$$
\ddot{z}^{\ell m}(t)=0
$$

$$
E=\dot{A}=\nabla \phi(x), \quad \nabla^{2} \phi=0, \quad B=0
$$

- Electrostatic solutions (exact)
- Metric on the space of vacua

$$
\begin{aligned}
\mathrm{g}\left(\nabla \phi_{\ell m}, \nabla \phi_{\ell^{\prime} m^{\prime}}\right) & =\int_{M} \nabla_{i} \phi_{\ell m} \nabla^{i} \phi_{\ell^{\prime} m^{\prime}} \\
& =\oint_{\partial M} \phi_{\ell^{\prime} m^{\prime}} n \cdot \nabla \phi_{\ell m}=\ell \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}}
\end{aligned}
$$

- Physical vs. pure gauge

$$
\mathrm{g}\left(\nabla \phi_{\text {harm }}, \nabla \lambda_{\text {pure gauge }}\right)=0,\left.\quad \lambda_{\text {pure gauge }}\right|_{\partial M}=0
$$

Summary so far

- Adiabatic approximation as a probe of vacua and symmetries

Summary so far

- Adiabatic approximation as a probe of vacua and symmetries
- Identifies LGTs and their conjugate solutions

Summary so far

- Adiabatic approximation as a probe of vacua and symmetries
- Identifies LGTs and their conjugate solutions
- Specifies the bulk extension

Summary so far

- Adiabatic approximation as a probe of vacua and symmetries
- Identifies LGTs and their conjugate solutions
- Specifies the bulk extension
- This is missing in asymptotic symmetry analyses

Gravitational vacua and low energy dynamics

GR in synchronous gauge

- Einstein gravity

$$
S_{\mathrm{GR}}=\int_{\mathbb{R} \times M} d^{4} x \sqrt{-\operatorname{det} g} R^{(4)}
$$

GR in synchronous gauge

- Einstein gravity

$$
S_{\mathrm{GR}}=\int_{\mathbb{R} \times M} d^{4} x \sqrt{-\operatorname{det} g} R^{(4)}
$$

- Temporal gauge $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}$

GR in synchronous gauge

- Einstein gravity

$$
S_{\mathrm{GR}}=\int_{\mathbb{R} \times M} d^{4} x \sqrt{-\operatorname{det} g} R^{(4)}
$$

- Temporal gauge $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}$
- Effective Lagrangian

$$
S_{\mathrm{nat}}=\int d t \frac{1}{2} \mathrm{~g}(\dot{h}, \dot{h})-V(h)
$$

GR in synchronous gauge

- Einstein gravity

$$
S_{\mathrm{GR}}=\int_{\mathbb{R} \times M} d^{4} x \sqrt{-\operatorname{det} g} R^{(4)}
$$

- Temporal gauge $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}$
- Effective Lagrangian

$$
S_{\mathrm{nat}}=\int d t \frac{1}{2} \mathrm{~g}(\dot{h}, \dot{h})-V(h)
$$

- WdW metric

GR in synchronous gauge

- Einstein gravity

$$
S_{\mathrm{GR}}=\int_{\mathbb{R} \times M} d^{4} x \sqrt{-\operatorname{det} g} R^{(4)}
$$

- Temporal gauge $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}$
- Effective Lagrangian

$$
S_{\mathrm{nat}}=\int d t \frac{1}{2} \mathrm{~g}(\dot{h}, \dot{h})-V(h)
$$

- WdW metric

$$
\mathrm{g}\left(\delta_{1} h, \delta_{2} h\right)=\frac{1}{2} \int_{M} d^{3} x \sqrt{h} h^{i[k} h^{j] l} \delta_{1} h_{i j} \delta_{2} h_{k l},
$$

GR in synchronous gauge

- Einstein gravity

$$
S_{\mathrm{GR}}=\int_{\mathbb{R} \times M} d^{4} x \sqrt{-\operatorname{det} g} R^{(4)}
$$

- Temporal gauge $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}$
- Effective Lagrangian $\quad S_{\text {nat }}=\int d t \frac{1}{2} \mathrm{~g}(\dot{h}, \dot{h})-V(h)$
- WdW metric

$$
\begin{aligned}
\mathrm{g}\left(\delta_{1} h, \delta_{2} h\right) & =\frac{1}{2} \int_{M} d^{3} x \sqrt{h} h^{i[k} h^{j] l} \delta_{1} h_{i j} \delta_{2} h_{k l}, \\
V(h) & =-\frac{1}{2} \int_{M} d^{3} x \sqrt{\operatorname{det} h} R(h)
\end{aligned}
$$

GR in synchronous gauge

- Einstein gravity

$$
S_{\mathrm{GR}}=\int_{\mathbb{R} \times M} d^{4} x \sqrt{-\operatorname{det} g} R^{(4)}
$$

- Temporal gauge $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+h_{i j}(t, x) d x^{i} d x^{j}$
- Effective Lagrangian $\quad S_{\text {nat }}=\int d t \frac{1}{2} \mathrm{~g}(\dot{h}, \dot{h})-V(h)$
- WdW metric

$$
\begin{aligned}
\mathrm{g}\left(\delta_{1} h, \delta_{2} h\right) & =\frac{1}{2} \int_{M} d^{3} x \sqrt{h} h^{i[k} h^{j] l} \delta_{1} h_{i j} \delta_{2} h_{k l}, \\
V(h) & =-\frac{1}{2} \int_{M} d^{3} x \sqrt{\operatorname{det} h} R(h)
\end{aligned}
$$

- Field equations

$$
\begin{aligned}
R_{i j}+\frac{1}{2} \ddot{h}_{i j}-\frac{1}{2} h^{k l} \dot{h}_{k[i} \dot{h}_{l] j} & =0 & & \text { Dynamical equation } \\
\nabla^{i}\left(\dot{h}_{i j}-h^{k l} \dot{h}_{k l} h_{i j}\right) & =0 & & \text { Momentum constraint } \\
R+\frac{1}{2} h^{i j} h^{k l} \dot{h}_{i[j} \dot{h}_{k] l} & =0 & & \text { Hamiltonian constraint }
\end{aligned}
$$

Gravitational vacua

- Configuration space

$$
\mathcal{C}=\left\{h_{i j}(x)\right\}
$$

Gravitational vacua

- Configuration space

$$
\mathcal{C}=\left\{h_{i j}(x)\right\}
$$

- Vacua

$$
\delta V=0 \quad \Longrightarrow \quad R_{i j}(\bar{h})=0
$$

Gravitational vacua

- Configuration space

$$
\mathcal{C}=\left\{h_{i j}(x)\right\}
$$

- Vacua

$$
\delta V=0 \quad \Longrightarrow \quad R_{i j}(\bar{h})=0
$$

- Whose (regular) solutions are

$$
\bar{h}=\phi \cdot \bar{h}_{\text {ref }} \quad \bar{h}_{\text {ref }}=\delta_{i j}
$$

Gravitational vacua

- Configuration space

$$
\mathcal{C}=\left\{h_{i j}(x)\right\}
$$

- Vacua

$$
\delta V=0 \quad \Longrightarrow \quad R_{i j}(\bar{h})=0
$$

- Whose (regular) solutions are

$$
\bar{h}=\phi \cdot \bar{h}_{\mathrm{ref}} \quad \bar{h}_{\mathrm{ref}}=\delta_{i j}
$$

- Location of the boundary fixed (Boundary condition)

Gravitational vacua

- Configuration space

$$
\mathcal{C}=\left\{h_{i j}(x)\right\}
$$

- Vacua

$$
\delta V=0 \quad \Longrightarrow \quad R_{i j}(\bar{h})=0
$$

- Whose (regular) solutions are

$$
\bar{h}=\phi \cdot \bar{h}_{\text {ref }} \quad \bar{h}_{\text {ref }}=\delta_{i j}
$$

- Location of the boundary fixed (Boundary condition)
- Homogeneous space

$$
\mathcal{V}=\mathscr{G} \cdot \bar{h}_{\text {ref }} \quad \mathscr{L}=\text { Boundary preserving spatial diffeos }
$$

Gravitational vacua

- Configuration space

$$
\mathcal{C}=\left\{h_{i j}(x)\right\}
$$

- Vacua

$$
\delta V=0 \quad \Longrightarrow \quad R_{i j}(\bar{h})=0
$$

- Whose (regular) solutions are

$$
\bar{h}=\phi \cdot \bar{h}_{\mathrm{ref}} \quad \bar{h}_{\mathrm{ref}}=\delta_{i j}
$$

- Location of the boundary fixed (Boundary condition)
- Homogeneous space

$$
\mathcal{V}=\mathscr{G} \cdot \bar{h}_{\text {ref }} \quad \mathscr{L}=\text { Boundary preserving spatial diffeos }
$$

- Coordinate system z^{α}

$$
\bar{h}(x ; z)=g_{z} \cdot h_{\text {ref }}
$$

Motion on the space of vacua

- Manton approximation

$$
h(t, x)=\bar{h}(x ; z(t))
$$

Motion on the space of vacua

- Manton approximation

$$
h(t, x)=\bar{h}(x ; z(t))
$$

- Velocity (extrinsic curvature)

$$
\dot{h}=\delta_{\chi_{z}} \bar{h}=\bar{\nabla}_{\mathrm{s}} \chi_{z} \quad \chi_{z}^{i}=\dot{\phi}_{z}^{\frac{k}{z}} \phi_{z \underline{k}}^{i}
$$

Motion on the space of vacua

- Manton approximation

$$
h(t, x)=\bar{h}(x ; z(t))
$$

- Velocity (extrinsic curvature)

$$
\dot{h}=\delta_{\chi_{z}} \bar{h}=\bar{\nabla}_{\mathrm{s}} \chi_{z} \quad \chi_{z}^{i}=\dot{\phi}_{z}^{\frac{k}{z}} \phi_{z \underline{k}}^{i}
$$

- Low energy dynamics

$$
S[z(t)]=\int d t \frac{1}{2} \overline{\mathrm{~g}}_{z}(\dot{z}, \dot{z}) \quad \overline{\mathrm{g}}_{z}(\dot{z}, \dot{z})=\mathrm{g}\left(\bar{\nabla}_{\mathrm{s}} \chi_{z}, \bar{\nabla}_{\mathrm{s}} \chi_{z}\right)
$$

Imposing constraints

- Momentum constraint

$$
\nabla^{i} \partial_{[i} \chi_{j]}=0
$$

Imposing constraints

- Momentum constraint

$$
\nabla^{i} \partial_{[i} \chi_{j]}=0
$$

- Metric on the space of vacua

$$
\begin{aligned}
\left\langle\chi_{1}, \chi_{2}\right\rangle_{h} & \equiv \mathrm{~g}\left(\nabla_{\mathrm{s}} \chi^{(1)}, \nabla_{\mathrm{s}} \chi^{(2)}\right) \\
& =\oint_{\partial M} \sqrt{k} d^{2} y\left(\chi_{(1)}^{a} D^{\perp} \chi_{a}^{(2)}-K_{a b} \chi_{(1)}^{a} \chi_{(2)}^{b}\right)
\end{aligned}
$$

Imposing constraints

- Momentum constraint

$$
\nabla^{i} \partial_{[i} \chi_{j]}=0
$$

- Metric on the space of vacua

$$
\begin{aligned}
\left\langle\chi_{1}, \chi_{2}\right\rangle_{h} & \equiv \mathrm{~g}\left(\nabla_{\mathrm{s}} \chi^{(1)}, \nabla_{\mathrm{s}} \chi^{(2)}\right) \\
& =\oint_{\partial M} \sqrt{k} d^{2} y\left(\chi_{(1)}^{a} D^{\perp} \chi_{a}^{(2)}-K_{a b} \chi_{(1)}^{a} \chi_{(2)}^{b}\right)
\end{aligned}
$$

- Signature of metric

Imposing constraints

- Momentum constraint

$$
\nabla^{i} \partial_{[i} \chi_{j]}=0
$$

- Metric on the space of vacua

$$
\begin{aligned}
\left\langle\chi_{1}, \chi_{2}\right\rangle_{h} & \equiv \mathrm{~g}\left(\nabla_{\mathrm{s}} \chi^{(1)}, \nabla_{\mathrm{s}} \chi^{(2)}\right) \\
& =\oint_{\partial M} \sqrt{k} d^{2} y\left(\chi_{(1)}^{a} D^{\perp} \chi_{a}^{(2)}-K_{a b} \chi_{(1)}^{a} \chi_{(2)}^{b}\right)
\end{aligned}
$$

- Signature of metric

$$
\chi_{i}=\eta_{i}+\partial_{j} \phi, \quad \nabla_{i} \eta^{i}=0
$$

Imposing constraints

- Momentum constraint

$$
\nabla^{i} \partial_{[i} \chi_{j]}=0
$$

- Metric on the space of vacua

$$
\begin{aligned}
\left\langle\chi_{1}, \chi_{2}\right\rangle_{h} & \equiv \mathrm{~g}\left(\nabla_{\mathrm{s}} \chi^{(1)}, \nabla_{\mathrm{s}} \chi^{(2)}\right) \\
& =\oint_{\partial M} \sqrt{k} d^{2} y\left(\chi_{(1)}^{a} D^{\perp} \chi_{a}^{(2)}-K_{a b} \chi_{(1)}^{a} \chi_{(2)}^{b}\right)
\end{aligned}
$$

- Signature of metric

$$
\begin{aligned}
\chi_{i} & =\eta_{i}+\partial_{j} \phi, & \nabla_{i} \eta^{i} & =0 \\
\langle\eta, \eta\rangle_{h} & \geq 0, & \langle\partial \phi, \partial \phi\rangle_{h} & \leq 0
\end{aligned}
$$

Imposing constraints

- Momentum constraint

$$
\nabla^{i} \partial_{[i} \chi_{j]}=0
$$

- Metric on the space of vacua

$$
\begin{aligned}
\left\langle\chi_{1}, \chi_{2}\right\rangle_{h} & \equiv \mathrm{~g}\left(\nabla_{\mathrm{s}} \chi^{(1)}, \nabla_{\mathrm{s}} \chi^{(2)}\right) \\
& =\oint_{\partial M} \sqrt{k} d^{2} y\left(\chi_{(1)}^{a} D^{\perp} \chi_{a}^{(2)}-K_{a b} \chi_{(1)}^{a} \chi_{(2)}^{b}\right)
\end{aligned}
$$

- Signature of metric

$$
\begin{aligned}
\chi_{i} & =\eta_{i}+\partial_{j} \phi, & \nabla_{i} \eta^{i} & =0 \\
\langle\eta, \eta\rangle_{h} & \geq 0, & \langle\partial \phi, \partial \phi\rangle_{h} & \leq 0
\end{aligned}
$$

- Hamiltonian constraint

$$
\left\langle\chi_{1}, \chi_{2}\right\rangle_{h}=0
$$

Bulk extension

- Bulk extension of $\left.\chi\right|_{\partial M}=\zeta$ is unique up to exact vector fields $\partial_{i} \phi$.
- This however, does not affect the metric
- Conjecture The Hamiltonian constraint then fix the remaining part uniquely
- All the data is available on the boundary

Conserved momenta

- Conserved momenta

$$
P_{\zeta} \equiv \mathrm{g}_{z}\left(\dot{z}, \delta_{\zeta} h\right)=\left\langle\zeta, \chi_{z}\right\rangle_{\bar{h}(z)}=\int_{\partial M} \sqrt{\bar{k}} d^{2} y n^{i} e_{a}^{j} \zeta^{a} \dot{h}_{i j}
$$

Conserved momenta

- Conserved momenta

$$
P_{\zeta} \equiv \mathrm{g}_{z}\left(\dot{z}, \delta_{\zeta} h\right)=\left\langle\zeta, \chi_{z}\right\rangle_{\bar{h}(z)}=\int_{\partial M} \sqrt{\bar{k}} d^{2} y n^{i} e_{a}^{j} \zeta^{a} \dot{h}_{i j}
$$

- Surface charges from covariant phase space

$$
\begin{gathered}
Q_{\chi}=\int_{M} \Theta\left(\delta_{\chi} h\right) \\
\Theta\left(\delta_{\chi} h\right)=\int_{M} d^{3} x \sqrt{h}\left(\dot{h}_{i j}-h_{i j} h^{k l} \dot{h}_{k l}\right) \nabla^{i} \chi^{j} \\
Q_{\chi}=\int_{\partial M} d^{2} y \sqrt{k} n^{i} \chi^{j} \dot{h}_{i j}
\end{gathered}
$$

Conserved momenta

- Conserved momenta

$$
P_{\zeta} \equiv \mathrm{g}_{z}\left(\dot{z}, \delta_{\zeta} h\right)=\left\langle\zeta, \chi_{z}\right\rangle_{\bar{h}(z)}=\int_{\partial M} \sqrt{\bar{k}} d^{2} y n^{i} e_{a}^{j} \zeta^{a} \dot{h}_{i j}
$$

- Surface charges from covariant phase space

$$
\begin{gathered}
Q_{\chi}=\int_{M} \Theta\left(\delta_{\chi} h\right) \\
\Theta\left(\delta_{\chi} h\right)=\int_{M} d^{3} x \sqrt{h}\left(\dot{h}_{i j}-h_{i j} h^{k l} \dot{h}_{k l}\right) \nabla^{i} \chi^{j} \\
Q_{\chi}=\int_{\partial M} d^{2} y \sqrt{k} n^{i} \chi^{j} \dot{h}_{i j}
\end{gathered}
$$

- The momenta are equal to Noether surface charges

$$
P_{\zeta}=Q_{\chi} \quad \text { where } \quad \zeta^{a}=\left.\chi^{a}\right|_{\partial M}
$$

Example: Spherical boundary

- Diffeos on the boundary

$$
\zeta_{a}=\sqrt{k} \epsilon_{a}^{b} \partial_{b} \tau+\partial_{a} \rho \quad \tau=\sum_{\ell, m} a_{\ell m}, \quad \rho=\sum_{\ell, m} b_{\ell m} Y_{\ell m}
$$

Example: Spherical boundary

- Diffeos on the boundary

$$
\zeta_{a}=\sqrt{k} \epsilon_{a}{ }^{b} \partial_{b} \tau+\partial_{a} \rho \quad \tau=\sum_{\ell, m} a_{\ell m}, \quad \rho=\sum_{\ell, m} b_{\ell m} Y_{\ell m}
$$

- Bulk extension

$$
\chi_{i}=\eta_{i}+\partial_{i} \phi,\left.\quad \chi_{a}\right|_{\partial M}=\zeta_{a}
$$

Example: Spherical boundary

- Diffeos on the boundary

$$
\zeta_{a}=\sqrt{k} \epsilon_{a}{ }^{b} \partial_{b} \tau+\partial_{a} \rho \quad \tau=\sum_{\ell, m} a_{\ell m}, \quad \rho=\sum_{\ell, m} b_{\ell m} Y_{\ell m}
$$

- Bulk extension

$$
\chi_{i}=\eta_{i}+\partial_{i} \phi,\left.\quad \chi_{a}\right|_{\partial M}=\zeta_{a}
$$

- Momentum constraint

$$
\eta=r \times \nabla H, \quad H=\sum_{\ell, m} a_{\ell m}\left(\frac{R}{r}\right)^{\ell+1} Y_{\ell m}
$$

Example: Spherical boundary

- Diffeos on the boundary

$$
\zeta_{a}=\sqrt{k} \epsilon_{a}^{b} \partial_{b} \tau+\partial_{a} \rho \quad \tau=\sum_{\ell, m} a_{\ell m}, \quad \rho=\sum_{\ell, m} b_{\ell m} Y_{\ell m}
$$

- Bulk extension

$$
\chi_{i}=\eta_{i}+\partial_{i} \phi,\left.\quad \chi_{a}\right|_{\partial M}=\zeta_{a}
$$

- Momentum constraint

$$
\eta=r \times \nabla H, \quad H=\sum_{\ell, m} a_{\ell m}\left(\frac{R}{r}\right)^{\ell+1} Y_{\ell m}
$$

- Metric on the space of vacua

$$
\left\langle\zeta_{(1)}, \zeta_{(2)}\right\rangle=R^{3} \sum_{\ell, m} \ell(\ell+1)\left((\ell-1) a_{\ell m}^{(1)} a_{\ell m}^{(2)}-2 b_{\ell m}^{(1)} b_{\ell m}^{(2)}\right)
$$

Example: Spherical boundary

- Diffeos on the boundary

$$
\zeta_{a}=\sqrt{k} \epsilon_{a}^{b} \partial_{b} \tau+\partial_{a} \rho \quad \tau=\sum_{\ell, m} a_{\ell m}, \quad \rho=\sum_{\ell, m} b_{\ell m} Y_{\ell m}
$$

- Bulk extension

$$
\chi_{i}=\eta_{i}+\partial_{i} \phi,\left.\quad \chi_{a}\right|_{\partial M}=\zeta_{a}
$$

- Momentum constraint

$$
\eta=r \times \nabla H, \quad H=\sum_{\ell, m} a_{\ell m}\left(\frac{R}{r}\right)^{\ell+1} Y_{\ell m}
$$

- Metric on the space of vacua

$$
\left\langle\zeta_{(1)}, \zeta_{(2)}\right\rangle=R^{3} \sum_{\ell, m} \ell(\ell+1)\left((\ell-1) a_{\ell m}^{(1)} a_{\ell m}^{(2)}-2 b_{\ell m}^{(1)} b_{\ell m}^{(2)}\right)
$$

- Hamiltonian constrain

$$
\sum_{\ell, m}(\ell-1) a_{\ell m}^{2}-2 b_{\ell m}^{2}=0
$$

Example: Spherical boundary

- Diffeos on the boundary

$$
\zeta_{a}=\sqrt{k} \epsilon_{a}{ }^{b} \partial_{b} \tau+\partial_{a} \rho \quad \tau=\sum_{\ell, m} a_{\ell m}, \quad \rho=\sum_{\ell, m} b_{\ell m} Y_{\ell m}
$$

- Bulk extension

$$
\chi_{i}=\eta_{i}+\partial_{i} \phi,\left.\quad \chi_{a}\right|_{\partial M}=\zeta_{a}
$$

- Momentum constraint

$$
\eta=r \times \nabla H, \quad H=\sum_{\ell, m} a_{\ell m}\left(\frac{R}{r}\right)^{\ell+1} Y_{\ell m}
$$

- Metric on the space of vacua

$$
\left\langle\zeta_{(1)}, \zeta_{(2)}\right\rangle=R^{3} \sum_{\ell, m} \ell(\ell+1)\left((\ell-1) a_{\ell m}^{(1)} a_{\ell m}^{(2)}-2 b_{\ell m}^{(1)} b_{\ell m}^{(2)}\right)
$$

- Hamiltonian constrain

$$
\sum_{\ell, m}(\ell-1) a_{\ell m}^{2}-2 b_{\ell m}^{2}=0
$$

- Modeling a generic stationary solution (conjecture)

Summary and outlook

- Adiabatic approximation as a probe of the space of vacua
- It allows to identify the physical symmetries and their bulk extensions
- and to identify a set of solutions of the theory
- Divergences in the large volume limit
- Solve the bulk extension and identify solutions

Thank you for your attention

