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Motivation

I Gauge symmetries in the presence of boundaries

I Well known results in gravity, holography, Chern-Simons, Quantum

Hall effect, QED etc. [Regge, Teitelboim],[Brown-Henneaux] [Bondi,

Metzner,Sachs]

I Strominger’s infrared triangle

1 Introduction

1.1 The infrared triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very di↵erent starting points and expressed in
very di↵erent notations.

Soft
Theorem

Ward
Identity Asymptotic

Symmetry

Vacuum
Transition

Memory
Effect

Fourier
Transform

1

Figure 1: The infrared triangle.

The first corner is the ‘soft theorems’. These originated in QED in 1937 with the work
of Bloch and Nordsieck [1], were significantly developed in 1958 by Low and others [2–6]
and generalized to gravity in 1965 by Weinberg [7]. Soft theorems characterize universal
properties of Feynman diagrams and scattering amplitudes when a massless external particle
becomes ‘soft’, i.e. its energy is taken to zero. They tell us that a surprisingly large — in
fact infinite — number of soft particles are produced in any physical process, but in a highly
controlled manner which is central to the consistency of quantum field theory.

The second corner is the subject of ‘asymptotic symmetries’. This is the study of the
non-trivial exact symmetries or conserved charges of any system with an asymptotic region
or boundary. One of the earliest examples appears in the pioneering work of Bondi, van
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Motivation: Degenerate vacua

I Large gauge symmetries: Physical subset of gauge symmetries

I Vacuum: minimum energy configuration

I Broken symmetries and degenerate vacua G : φvac0 → φvacg

I Degenerate space of vacua V = {φvacg }

I Zero modes vs normal modes

I Adiabatic (Manton) approximation [Manton ’82, Stuart ’07 ]
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Warm-up: Particle theory



Particle theory

I Lagrangian

L =
1

2
gIJ(X)ẊIẊJ − V (XI)

I Configuration space C = {XI}

I Space of vacua V = S2 = SO(3)/SO(2)

I Spherical coordinates (R+ ρ, zα)

(R+ ρ)
(
z̈α + Γαβγ ż

β żγ
)

+ 2ρ̇żα = 0

ρ̈+
4

m
ρ(ρ+ 2R)(ρ+R)− (R+ ρ)gαβ ż

αżβ = 0
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Adiabatic limit

I To realize the adiabatic limit, redefine

τ = εt, ε� 1

I Replace in e.o.m
d

dt
→ ε

d

dτ

I Normal mode equation ρ = O(ε2)

I Zero mode equations

z̈α + Γαβγ ż
β żγ = 0 +O(ε2)

I Low energy solutions: Geodesics on the space of vacua.
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β żγ = 0 +O(ε2)

I Low energy solutions: Geodesics on the space of vacua.

5



Adiabatic limit

I To realize the adiabatic limit, redefine

τ = εt, ε� 1

I Replace in e.o.m
d

dt
→ ε

d

dτ

I Normal mode equation ρ = O(ε2)

I Zero mode equations

z̈α + Γαβγ ż
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Maxwell theory and its vacua



Configuration space and its metric

I Temporal gauge A0 = 0

L[Ai] =
1

2

∫
d3x

(
gijȦiȦj − FijF ij

)

I together with the Gauss constraint ∂iȦ
i = 0

I Configuration space C = {A(x)}

I Time dependent solutions as curves

I Electric field as the tangent vector

I Metric on the configuration space

g(δ1A, δ2A) =

∫
d3xTr δ1Ai δ2A

i

6
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i = 0

I Configuration space C = {A(x)}

I Time dependent solutions as curves

I Electric field as the tangent vector

I Metric on the configuration space

g(δ1A, δ2A) =

∫
d3xTr δ1Ai δ2A

i

6



Configuration space and its metric

I Temporal gauge A0 = 0

L[Ai] =
1

2

∫
d3x

(
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Physical vacua

I Vacuum configurations V = min(V )

Fij = 0 =⇒ Ai = ∂iφ

I Generated by gauge symmetries V = G ·Aref

I Expanded in a complete basis φ = zαφα(x)

I zα defines a coordinate system on the space of vacua

I Motion on the space of vacua φ(t, x) = zα(t)φα(x)

I Gauss constraint ∇ · Ȧ = żα∇2φα = 0

I Allowed directions (LGTs)

φα = (
r

R
)`Y`m harmonic gauge parameters

I Theorem: Gharmonic
∼= Gboundary

∼= G/G0.
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Adiabatic solutions

I Geodesic equation z̈`m(t) = 0

E = Ȧ = ∇φ(x), ∇2φ = 0, B = 0

I Electrostatic solutions (exact)

I Metric on the space of vacua

g(∇φ`m,∇φ`′m′) =

∫
M

∇iφ`m∇iφ`′m′

=

∮
∂M

φ`′m′ n · ∇φ`m = ` δ``′ δmm′

I Physical vs. pure gauge

g(∇φharm,∇λpure gauge) = 0, λpure gauge

∣∣
∂M

= 0

8
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Summary so far

I Adiabatic approximation as a probe of vacua and symmetries

I Identifies LGTs and their conjugate solutions

I Specifies the bulk extension

I This is missing in asymptotic symmetry analyses
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Gravitational vacua and low

energy dynamics



GR in synchronous gauge

I Einstein gravity SGR =
∫
R×M d4x

√
−det g R(4)

I Temporal gauge ds2 = gµνdx
µdxν = −dt2 + hij(t, x)dxidxj

I Effective Lagrangian Snat =
∫
dt 1

2g(ḣ, ḣ)− V (h)

I WdW metric

g(δ1h, δ2h) =
1

2

∫
M

d3x
√
hhi[khj]lδ1hijδ2hkl,

V (h) = −1

2

∫
M

d3x
√

dethR(h)

I Field equations

Rij +
1

2
ḧij −

1

2
hklḣk[iḣl]j = 0 Dynamical equation

∇i
(
ḣij − hklḣklhij

)
= 0 Momentum constraint

R+
1

2
hijhklḣi[j ḣk]l = 0 Hamiltonian constraint

10
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hhi[khj]lδ1hijδ2hkl,

V (h) = −1

2

∫
M

d3x
√

dethR(h)

I Field equations

Rij +
1

2
ḧij −

1

2
hklḣk[iḣl]j = 0 Dynamical equation

∇i
(
ḣij − hklḣklhij

)
= 0 Momentum constraint

R+
1

2
hijhklḣi[j ḣk]l = 0 Hamiltonian constraint
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ḧij −

1

2
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Gravitational vacua

I Configuration space C = {hij(x)}

I Vacua

δV = 0 =⇒ Rij(h̄) = 0

I Whose (regular) solutions are

h̄ = φ · h̄ref h̄ref = δij

I Location of the boundary fixed (Boundary condition)

I Homogeneous space

V = G · h̄ref G = Boundary preserving spatial diffeos

I Coordinate system zα h̄(x; z) = gz · href
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Motion on the space of vacua

I Manton approximation

h(t, x) = h̄(x; z(t))

I Velocity (extrinsic curvature)

ḣ = δχz h̄ = ∇̄sχz χiz = φ̇kzφ
i
z k

I Low energy dynamics

S[z(t)] =

∫
dt

1

2
ḡz(ż, ż) ḡz(ż, ż) = g(∇̄sχz, ∇̄sχz)
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ḡz(ż, ż) ḡz(ż, ż) = g(∇̄sχz, ∇̄sχz)

12



Imposing constraints

I Momentum constraint

∇i∂[iχj] = 0

I Metric on the space of vacua

〈χ1, χ2〉h ≡ g(∇sχ
(1),∇sχ

(2))

=

∮
∂M

√
k d2y

(
χa(1)D

⊥χ(2)
a −Kabχ

a
(1)χ

b
(2)

)
I Signature of metric

χi = ηi + ∂jφ, ∇iηi = 0

〈η, η〉h ≥ 0, 〈∂φ, ∂φ〉h ≤ 0

I Hamiltonian constraint 〈χ1, χ2〉h = 0
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Bulk extension

I Bulk extension of χ
∣∣∣
∂M

= ζ is unique up to exact vector fields ∂iφ.

I This however, does not affect the metric

I Conjecture The Hamiltonian constraint then fix the remaining part

uniquely

I All the data is available on the boundary
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Conserved momenta

I Conserved momenta

Pζ ≡ gz(ż, δζh) = 〈ζ, χz〉h̄(z) =

∫
∂M

√
k̄d2y niejaζ

aḣij

I Surface charges from covariant phase space

Qχ =

∫
M

Θ(δχh)

Θ(δχh) =

∫
M

d3x
√
h(ḣij − hijhklḣkl)∇iχj

Qχ =

∫
∂M

d2y
√
k ni χj ḣij

I The momenta are equal to Noether surface charges

Pζ = Qχ where ζa = χa|∂M
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Example: Spherical boundary

I Diffeos on the boundary

ζa =
√
kεa

b∂bτ + ∂aρ τ =
∑
`,m

a`m, ρ =
∑
`,m

b`mY`m

I Bulk extension χi = ηi + ∂iφ, χa|∂M = ζa

I Momentum constraint

η = r ×∇H, H =
∑
`,m

a`m

(
R

r

)`+1

Y`m

I Metric on the space of vacua

〈ζ(1), ζ(2)〉 = R3
∑
`,m

`(`+ 1)
(

(`− 1)a
(1)
`ma

(2)
`m − 2b

(1)
`mb

(2)
`m

)
I Hamiltonian constrain∑

`,m

(`− 1)a2
`m − 2b2`m = 0

I Modeling a generic stationary solution (conjecture)
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Summary and outlook

I Adiabatic approximation as a probe of the space of vacua

I It allows to identify the physical symmetries and their bulk extensions

I and to identify a set of solutions of the theory

I Divergences in the large volume limit

I Solve the bulk extension and identify solutions
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Thank you for your attention
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