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Particle theory

> Lagrangian
L= X% - %(XIXI — R?)?
» Configuration space C = {X'}
» Space of vacua V = 5% = SO(3)/50(2)
» Spherical coordinates (R + p, z%)
(R+p) (5% +15,5°27) +2p2* =0

4
p+—plp+2R)(p+ R) = (R+ p)gas®s” =0
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Adiabatic limit

» To realize the adiabatic limit, redefine

T = €t, ek 1
» Replace in e.o.m d—> d
in e.o. — = e—
i at  “dr
» Normal mode equation p = 0(e?)

» Zero mode equations

£+ 15,527 =0+ O(?)

v

Low energy solutions: Geodesics on the space of vacua.
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Configuration space and its metric

» Temporal gauge Ag =0
1 L g
L[AZ] = 5 /dSJ,‘ (ngAiAj — FijFlj)

> together with the Gauss constraint 9 AT =0

» Configuration space C = {A(z)}
» Time dependent solutions as curves

» Electric field as the tangent vector

» [Vetric on the configuration space

g(&lA, (5214) = /dsfl' Tr 51Az 52_/41
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Physical vacua

» Vacuum configurations Y = min(V)
Fij =0 = A;=0;¢
> Generated by gauge symmetries V = G - Ayef
» Expanded in a complete basis ¢ = 2%¢,, ()
> 2% defines a coordinate system on the space of vacua
» Motion on the space of vacua ¢(t,x) = 2%(t)pa ()
» Gauss constraint V- A = 2°V2¢, =0
> Allowed directions (LGTs)

o = (=

R)Zng harmonic gauge parameters

> Theorerﬂ: (,lwharmonic = (iboundary = (;,"(IU- 7
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Adiabatic solutions

» Geodesic equation m(t) =0
E=A=V¢(), V>¢=0, B=0
» Electrostatic solutions (exact)

» Metric on the space of vacua
g(v¢€rrL7 v¢€’m’) = / vi¢€m,vi¢l’m’
M

= Germr - NV P = L0007 Oy
oM

» Physical vs. pure gauge

g(vd)harmv v)\pure gauge) = Oa )\pure gauge|gns — 0
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Summary so far

v

Adiabatic approximation as a probe of vacua and symmetries

v

Identifies LGTs and their conjugate solutions

v

Specifies the bulk extension

v

This is missing in asymptotic symmetry analyses



Gravitational vacua and low
energy dynamics
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GR in synchronous gauge

» Einstein gravity Scr = Jg, d*zy/—detg RY
» Temporal gauge ds® = g, dztdz” = —dt® + hyj(t, x)dz'dz’
» Effective Lagrangian Snat = [ dt 1g(h,h) — V(h)
> WdW metric
g(01h, 62h) = % /M eV hh RIS, hijdahg,
V(h) = —% /M d*z V/det h R(h)
> Field equations

1. 1 ... . ] ]
R + §hij — §hklhk[ihl]j =1} Dynamical equation
A& (hij - hklhklhij) =0 Momentum constraint

R+ ih” hklhi[jhk” =0 Hamiltonian constraint o0
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Gravitational vacua

» Configuration space C = {hij(x)}

» Vacua
oV =0 — RLJ(E) =X()

v

Whose (regular) solutions are

h = ¢ < Prer href = 61’]‘

v

Location of the boundary fixed (Boundary condition)

v

Homogeneous space

V =G - hyet ¢ = Boundary preserving spatial diffeos

v

Coordinate system z* h(z;2) = gs - hyet

11
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Motion on the space of vacua

» Manton approximation

h(t,x) = h(x; 2(t))

» Velocity (extrinsic curvature)

h=8.h=Vx:  xi=d5L,

» Low energy dynamics

S = [d3e(8)  Bli2) = BT T

12
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Imposing constraints

» Momentum constraint
Vi0jix;) =0

» Metric on the space of vacua

<X17 X2>h = g(vsX(l)> VSX(2))

= Vi d?y (x‘(ﬁ)DLxﬁf) - Kabx‘&)xl(’g))

» Signature of metric

Xi = n; + 059, Vin' =0
<T]77)>h Z Ov <a¢7a¢>h S 0

» Hamiltonian constraint (Xx1,x2)n =0

13



Bulk extension

v

Bulk extension of y = ( is unique up to exact vector fields 0;¢.
oM

This however, does not affect the metric

v

Conjecture The Hamiltonian constraint then fix the remaining part

v

uniquely

All the data is available on the boundary

v

14
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Conserved momenta

» Conserved momenta

Pe=g(50ch) = (CXdicy = [ VEEynielcti
» Surface charges from covariant phase space
Qx - / 6(5xh)
J M

O(d,h) = /M a3z Vh(hij — high® ) Vix?

By = dPyVEkn® X i
oM
» The momenta are equal to Noether surface charges

Pr=Q, where (%= x4y

15
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Example: Spherical boundary

» Diffeos on the boundary

Ca = \/Eeabalﬂ’ + aap T= Z Qpm, P = Z berm Yem

Zm Z,m

v

Bulk extension Xi =i + 0;9, Xalopr = Ca

Momentum constraint
R £+1
n=rx VHa H= Zahn (> Yim
Lm r

Metric on the space of vacua

lm

v

v

Hamiltonian constrain

Z(z 1)aim 26/777 =0

Lm

v

v

Modeling a generic stationary solution (conjecture)
16



Summary and outlook

v

Adiabatic approximation as a probe of the space of vacua

v

It allows to identify the physical symmetries and their bulk extensions

v

and to identify a set of solutions of the theory

v

Divergences in the large volume limit

v

Solve the bulk extension and identify solutions

17



Thank you for your attention
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