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Inequalities in physics

Interesting physical consequences from mathematical inequalities
I Positivity inequalities: probabilities non-negative, P ≥ 0

I Cauchy–Schwarz inequalities: Heisenberg uncertainty, ∆x∆p ≥ 1
2

I Convexity inequalities: second law of thermodynamics, δS ≥ 0
I In gravitational context: energy inequalities

I Definition: (local) inequalities on the stress tensor Tµν
e.g. Null Energy Condition (NEC)

Tkk = Tµν k
µkν ≥ 0 ∀kµkµ = 0

I Physically plausible (positivity of energy fluxes)
I Mathematically useful (singularity theorem, area theorem [2nd law])

However: all classical energy inequalities violated by quantum effects!

Are there quantum energy conditions?
[How is 2nd law saved?]
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Interesting physical consequences from mathematical inequalities
I Positivity inequalities: probabilities non-negative, P ≥ 0
I Cauchy–Schwarz inequalities: Heisenberg uncertainty, ∆x∆p ≥ 1

2
I Convexity inequalities: second law of thermodynamics, δS ≥ 0
I In gravitational context: energy inequalities

I Definition: (local) inequalities on the stress tensor Tµν
e.g. Null Energy Condition (NEC)

Tkk = Tµν k
µkν ≥ 0 ∀kµkµ = 0

For instance: Penrose singularity theorem from Raychaudhuri eq.

d2area

dk2
= −

(d area

dk

)2
− shear2 − 8πGTkk ≤ −8πGTkk

NEC

≤ 0

If Tkk ≥ 0 (NEC) ⇒ focussing!
(negative acceleration of area)

For experts:
d area
dk

= θ is null expansion
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I In gravitational context: energy inequalities

I Definition: (local) inequalities on the stress tensor Tµν
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Tkk = Tµν k
µkν ≥ 0 ∀kµkµ = 0

I Physically plausible (positivity of energy fluxes)
I Mathematically useful (singularity theorem, area theorem [2nd law])

However: all classical energy inequalities violated by quantum effects!

NEC violated by Casimir energy, accelerated mirrors, Hawking radiation, ...

Are there quantum energy conditions?
[How is 2nd law saved?]
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Quantum energy conditions

I Definition: quantum energy condition = convexity condition for 〈Tµν〉
valid for any state and any (reasonable) quantum field theory (QFT)

I Example: Averaged Null Energy Condition (ANEC)∫
dxλkλ 〈Tµνkµkν〉 ≥ 0

valid ∀kµ(with kµkµ = 0) and ∀ states |〉 in any (reasonable) QFT

I ANEC proved under rather generic assumptions

I ANEC sufficient for focussing properties used in singularity theorems

I ANEC compatible with quantum interest conjecture

I However: ANEC is non-local (
∫

dx+)

Is there a local quantum energy condition?
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valid for any state and any (reasonable) quantum field theory (QFT)

I Example: Averaged Null Energy Condition (ANEC)∫
dxλkλ 〈Tµνkµkν〉 ≥ 0

valid ∀kµ(with kµkµ = 0) and ∀ states |〉 in any (reasonable) QFT
I ANEC proved under rather generic assumptions

Faulkner, Leigh, Parrikar and Wang 1605.08072

Hartman, Kundu and Tajdini 1610.05308

I ANEC sufficient for focussing properties used in singularity theorems
I ANEC compatible with quantum interest conjecture
I However: ANEC is non-local (

∫
dx+)

Is there a local quantum energy condition?
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Quantum null energy condition (QNEC)
Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

Physical motivation from focussing properties and second law:
Replace area by area + 4G (entanglement entropy)
Modified Raychaudhuri eq., schematically:

d2area

dk2
+ 4GS′′ = −8πGTkk + 4GS′′

QNEC

≤ 0

requires for focussing property (= 2nd law) QNEC

fineprint: above we set expansion to zero, d area
dk

= 0, and shear to zero; we also set the area to unity,
√
γ = 1

thus, QNEC is implied from quantum focussing for special congruences
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Quantum null energy condition (QNEC)
Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

Obvious observations:
I if r.h.s. vanishes: semi-classical version of NEC
I if r.h.s. negative: weaker condition than NEC

(NEC can be violated while QNEC holds)
I if r.h.s. positive: stronger condition than NEC

(if QNEC holds also NEC holds)
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Quantum null energy condition (QNEC)
Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

I Tkk = Tµνk
µkν with kµk

µ = 0 and 〈〉 denotes expectation value

I S′′: 2nd variation of EE for entangling surface deformations along kµ
I √γ: induced volume form of entangling region (black boundary curve)
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Quantum null energy condition (QNEC)
Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

Proofs of QNEC in D > 2:

I For free QFTs: Bousso, Fisher, Koeller, Leichenauer and Wall, 1509.02542

I For holographic CFTs: Koeller and Leichenauer, 1512.06109

I For general CFTs: Balakrishnan, Faulkner, Khandker and Wang, 1706.09432

I QNEC from ANEC in QFTs: Ceyhan, Faulkner 1812.04683
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QNEC in CFT2

QNEC (in CFT2) is the following inequality

2π 〈Tkk〉 ≥ S′′ +
6

c

(
S′
)2

c > 0 is the central charge of the CFT2

Focus here on QNEC in AdS3/CFT2
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EE for states dual to Bañados geometries

I Solutions to AdS3 Einstein gravity with Brown–Henneaux bc’s:

ds2 =
dz2 − dx+ dx−

z2
+ L+(x+)(dx+)2 + L−(x−)(dx−)2 +O(z2)

I Holographic dictionary for vev of stress tensor:

2π 〈L+, L−|T±±(x±)|L+, L−〉 =
c

6
L±(x±)

I Uniform result for HEE from (H)RT

S = S+ + S− S± =
c

6
ln
(
`±(x±1 , x

±
2 )/εUV

)
from local diffeo to Poincaré patch AdS3, {z, x±} → {zP , x±P }

I `±(x±1 , x
±
2 ) = ψ±1 (x±1 )ψ±2 (x±2 )− ψ±2 (x±1 )ψ±1 (x±2 ) contain solutions to

Hill’s equation
ψ±
′′ − L± ψ± = 0

with unit Wronskian ψ±1 ψ
±
2
′ − ψ±2 ψ±1

′
= ±1
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QNEC saturation

I HEE transforms like anomalous scalar under diffeos (Wall ’11)

δξS = −ξµ ∂µS +
c

12
∂µξ

µ

I Natural to define “vertex operator”

V = exp
(6

c
S
)

= V +V − V ± =
`±(x±1 , x

±
2 )

εUV

I Expressing ` in terms of ψ shows also V ± solve Hill’s equation

V ′′ :=
∂2V

∂x+
1

2 = L+ V

I Relation V ′′/V = 6
c

(
S′′ + 6

c (S′)2
)

implies QNEC saturation

S′′ +
6

c

(
S′
)2

=
c

6
L+ = 2π 〈T++〉

QNEC saturation for all states dual to Bañados geometries
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V = exp
(6

c
S
)

= V +V − V ± =
`±(x±1 , x

±
2 )

εUV

I Expressing ` in terms of ψ shows also V ± solve Hill’s equation

V ′′ :=
∂2V

∂x+
1

2 = L+ V

I Relation V ′′/V = 6
c

(
S′′ + 6

c (S′)2
)

implies QNEC saturation

S′′ +
6

c

(
S′
)2

=
c

6
L+ = 2π 〈T++〉
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Example: far from equilibrium flow

I QNEC saturation for vacuum-like states obvious from symmetries

see arguments in Khandker, Kundu, Li ’18 for QNEC saturation in
absence of bulk matter

I Nevertheless, physically interesting examples such as far from
equilibrium flow Bhaseen, Dyon, Luca, Schalm ’13, Erdmenger, Fernandez,

Flory, Megias, Straub, Witkowski ’17

L+(x) = L−(−x) = π2
(
T 2
L + θ(x) (T 2

R − T 2
L)
)
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Figure 2 from 1311.3655 (Nature Phys.)

TL

TR t = 0

Steady'state'

AdS'boosted'black'hole'
JE 6= 0

x

I Far from equilibrium transport
in strongly coupled CFT

I Long-time energy transport
universally via steady-state

I In AdS3/CFT2: specific
Bañados geometry with step
function

I Our results imply QNEC
saturation at all times
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QNEC in dual of AdS3-Vaidya

I Vaidya = simple model for bulk matter; mass function M(t)

ds2 =
1

z2
(−(1−M(t)z2) dt2 − 2 dt dz + dx2)

I Numerical studies show curious “half-saturation” for large entangling
regions l

lim
l�1

S′′ + 6
c (S′)2

2π 〈Tkk〉
≈ 1

2

I Can be derived perturbatively for M(t) = εθ(t) with ε� 1
I If size of entangling region much larger than time, l� t0 we find

QNEC half-saturation

lim
l�t0

S′′ + 6
c (S′)2

2π 〈Tkk〉
=

1

2
± t0

l
+O(t20/l

2) +O(ε)

I If time is much larger than entangling region we find QNEC saturation

lim
t0�l

S′′ + 6
c (S′)2

2π 〈Tkk〉
= 1 +O(ε)
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Finite-c corrections to EE and QNEC

I Finite-c correction to EE (Faulkner, Lewkowycz, Maldacena ’13)

S = SHRT + Sbulk

I Take into account two corrections:

SHRT =
Aclassical

4G
+
δAbackreaction

4G
Sbulk: bulk entanglement of low energy dof’s

I Consider global AdS3 backreacted by bulk scalar field φ with mass
m2 = 4h(h− 1) ≥ −1 (see Belin, Iqbal, Lokhande ’18)

φ =
a√
2π

e−2iht

(1 + r2)h
+

a†√
2π

e2iht

(1 + r2)h

ds2 = −
(
r2 +G1(r)2

)
dt2 +

dr2

r2 +G2(r)2
+ r2 dϕ2

Gi(r) = 1− 12h

c

(
1− (i− 1)/(1 + r2)2h−1

)
+O(h2/c2)

I Asymptotically conical defect, 2π 〈T±±〉 = − c
24 + h+O(h2/c)
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I Asymptotically conical defect, 2π 〈T±±〉 = − c
24 + h+O(h2/c)
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Small interval

I Calculate SHRT for interval bounded by origin and t = λ, ϕ = ∆ϕ− λ

I Take λ-derivatives to get QNEC

S′′HRT +
6

c

(
S′HRT

)2
= − c

24
+h−h

√
π Γ[2h+ 2]

4Γ[2h+ 3
2 ]

sin4h−2 ∆ϕ

2
+O(1/c)

I Calculate Sbulk from bulk modular Hamiltonian

δSbulk = 2π 〈δHbulk〉+O(δ2)

I Bulk modular Hamiltonian vev given by

〈δHbulk〉 =

∫
ω, k

ω
(
|αω, k|2 + |βω, k|2

)
I Take small interval limit and obtain

2π 〈T±±〉 − S′′ −
6

c

(
S′
)2

= +O(∆ϕ4h)QNEC holds. QNEC saturation up to O(∆ϕ4h)
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map entanglement wedge to Rindler space (see Casini, Huerta, Myers ’11) and
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Half-interval

I Pragmatically, need small parameter for Sbulk

reason: for Renyi entropies need reduced density matrix
ρ: bulk density matrix
ρ1: reduced density matrix
ρ0: reduced density matrix for vacuum
δρ = ρ1 − ρ0: small for small interval

e.g. small interval limit: ∆ϕ is small parameter

I Use c� h� 1 so that 1/h is new small parameter
I Consider half-interval ∆ϕ = π in that limit
I Use saddle-point approximation to evaluate

∫
ω, k at large h

I HRT contribution yields

S′′HRT +
6

c

(
S′HRT

)2
= − c

24
− h

4

√
2πh+ h+ . . .

unexpected!
I Bulk contribution cancels precisely the unexpected term
I Final result for QNEC at half-interval and large h:

S′′ +
6

c

(
S′
)2

= − c

24
+ h−1

4
h+ . . .

2π 〈T±±〉 − S′′ −
6

c
(S′)2

∣∣
∆ϕ=π, c�h�1

=
1

4
h

QNEC non-saturation at half-interval:
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ω, k at large h

I HRT contribution yields

S′′HRT +
6

c

(
S′HRT

)2
= − c

24
− h

4

√
2πh+ h+ . . .

unexpected!

I Bulk contribution cancels precisely the unexpected term
I Final result for QNEC at half-interval and large h:
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Loose ends

We scratched the surface of QNEC in AdS3/CFT2

I QNEC saturates for vacuum-like states

I Curious half-saturation for states dual to AdS3-Vaidya
I Leading 1/c correction

I QNEC saturation at small interval
I QNEC-gap at half-interval
I Calculated both on CFT-side and holographically

Selected open issues

I QNEC as constraint for semi-classical model building (black holes)

I QNEC saturation as quantum equilibration?
I QNEC-like inequalities for QFTs that are not CFTs?

I Galilean/ultrarelativistic CFTs and flat space holography?
Bagchi et al ’09-’18

I warped CFTs (and their holographic duals)?
Detournay, Hartman, Hofman ’12

I other non-standard QFTs?
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Much to be learned about QNEC and its potential applications

Families of geodesics used in AdS3-Vaidya for numerical QNEC determination

Thanks for your attention!
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