Asymptotic Symmetries of Maxwell theory at Spatial Infinity in Arbitrary Dimensions

Erfan Esmaeili

School of Physics, IPM

based on 1902.02769

Erfan Esmaeili

IPM Workshop on String Theory

April 2019 1 /

Ultimate task

To understand/decide what happens far away from a Maxwell system and to find symmetry generators.

Symmetries

The set of all ways of changing your point of view which leave the appearance of something unchanged is called the symmetry group.

Symmetry in physical systems

- Invariance of Largangian $\mathcal{L} \to \mathcal{L} + \partial_{\mu} \mathcal{K}^{\mu}$
- Invarince of action $S \to S + \int_{\partial} \mathcal{K}$
- A vector field preserving the Symplectic form $L_{\xi}\Omega = 0$
- A phase space function G commuting with the Hamiltonian $\{H,G\}\approx 0$

The set of all ways of changing your point of view which leave the appearance of something unchanged is called the symmetry group.

Symmetry in physical systems

- Invariance of Largangian $\mathcal{L} \to \mathcal{L} + \partial_{\mu} \mathcal{K}^{\mu}$
- Invarince of action $S \to S + \int_{\partial} \mathcal{K}$
- A vector field preserving the Symplectic form $L_{\xi}\Omega = 0$
- A phase space function G commuting with the Hamiltonian $\{H,G\}\approx 0$

Example: Phase rotation of a Dirac particle

$$G = e \int d^3x \psi^{\dagger} \psi$$

The Charge is the on-shell value of the generator.

Gauge variables are determined with respect to reference frames.

Gauge symmetry:

- is the freedom to change the reference frame arbitrarily,
- is generated by *constraints* of the theory,
- has vanishing charge.

Regge-Teitelboim '74

Addition of appropriate surface term makes the generators well-defined and the charges non-vanishing.

Example: U(1) gauge symmetry of charged Dirac particle

$$G = \int d^3x \lambda(x) (\partial_i \pi^i + e\psi^{\dagger}\psi) - \int_{\partial} n_i \pi^i$$

where $\lambda|_{\partial} = 1$.

Recent motivation

• Infinite dimensional group of symmetries Strominger et al '14, Campiglia et al '15

$$G_{\lambda} \approx -\int_{\partial} n_i \lambda(\theta, \varphi) \pi^i$$

• (Quantized) symmetry generators commute with S matrix

 $\langle out|GS - SG|in \rangle = 0 \Rightarrow Soft photon theorem.$

Recent motivation

• Infinite dimensional group of symmetries Strominger et al '14, Campiglia et al '15

$$G_{\lambda}\approx -\int_{\partial}n_{i}\lambda(\theta,\varphi)\pi^{i}$$

• (Quantized) symmetry generators commute with S matrix

$$\langle out|GS - SG|in \rangle = 0 \Rightarrow Soft photon theorem.$$

Led to

- New soft theorems Sen et al '17,
- Conformal description of S-matrix Pasterski-Shao '17,
- New explanation of IR divergences Strominger'17.
- Understanding memory effects, old and new Gibbons '17
- $\bullet\,$ Hope in resolving information paradox Hawking et al '16

Rationale

Boundary behavior is sensitive to spacetime dimension.

Rationale

Boundary behavior is sensitive to spacetime dimension.

- $D \ge 4$ at null infinity, memory and symmetries, Wald-Satishchandran 1901.04467
- $D \geq 3$ at spatial infinity, covariant hyperbolic approach, EE,1902.02769
- $D \ge 5$ at null infinity, soft theorem and symmetries, He-Mitra,1903.02608
- $D \ge 5$ at spatial infinity, Hamiltonian approach, Henneaux-Troessaert, 1903.04437

The *collider dark age* when everything has gone inside but nothing has come out.

The theory

$$S = \int_{M_d} \sqrt{g} \left(-\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + \mathcal{A}_{\mu} J^{\mu} \right) \,,$$

Gauge symmetry

$$\mathcal{A}_{\mu}
ightarrow \mathcal{A}_{\mu} + \partial_{\mu} \Lambda$$

The action is invariant up to boundary terms

$$\delta_{\lambda}S = \int_{\partial M_d} \sqrt{g}\Lambda n_{\mu}J^{\mu}$$

Erfan Esmaeili

$$S = \int_{M_d} \sqrt{g} \left(-\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + \mathcal{A}_{\mu} J^{\mu} \right) \,,$$

Gauge symmetry

$$\mathcal{A}_{\mu}
ightarrow \mathcal{A}_{\mu} + \partial_{\mu} \Lambda$$

The action is invariant up to boundary terms

$$\delta_{\lambda}S = \int_{\partial M_d} \sqrt{g}\Lambda n_{\mu}J^{\mu}$$

Boundary conditions: To admit arbitrary configurations of moving electric charges. The starting point:

$$\mathcal{F}_{tr} = \frac{1}{r^{2-d}}$$
 electric charge at the origin

Hyperbolic coordinates

$$ds^{2} = \mathrm{d}\rho^{2} + \overbrace{\frac{\rho^{2}}{\sin^{2}T} \left(-\mathrm{d}T^{2} + q_{AB}\mathrm{d}x^{A}\mathrm{d}x^{B} \right)}^{\mathrm{metric on } dS_{d-1}}, \qquad 0 \leq T \leq \pi.$$

where

IPM Workshop on String Theory

SO(d-1,1) representations: $\mathcal{F}_{\mu\nu} \rightarrow \mathcal{F}_{a\rho} \oplus \mathcal{F}_{ab}$

Find the boundary conditions by applying the Poincare generators on the static charge

• Boosts:

$$\mathcal{F}_{T\rho} = \rho^{3-d} \sin^{d-3} T \sim \rho^{3-d} \quad \Rightarrow \quad \mathcal{F}_{a\rho} \sim \rho^{d-3}$$

and still $\mathcal{F}_{ab} = 0$

• Translations:

$$\mathcal{F}_{\rho a} \sim \mathcal{O}(\rho^{3-d}), \quad \Rightarrow \quad \mathcal{F}_{ab} \sim \mathcal{O}(\rho^{3-d})$$

Boundary conditions

From

$$\mathcal{F}_{\rho a} \sim \mathcal{O}(\rho^{3-d}) \quad , \quad \mathcal{F}_{ab} \sim \mathcal{O}(\rho^{3-d})$$

boundary conditions on the gauge field follow

$$\mathcal{A}_a \sim \mathcal{O}(\rho^{3-d}) \qquad \mathcal{A}_\rho \sim \mathcal{O}(\rho^{3-d})$$

Gauge transformations are not large enough!

From

$$\mathcal{F}_{\rho a} \sim \mathcal{O}(\rho^{3-d}) \quad , \quad \mathcal{F}_{ab} \sim \mathcal{O}(\rho^{3-d})$$

boundary conditions on the gauge field follow

$$\mathcal{A}_a \sim \mathcal{O}(\rho^{3-d}) \qquad \mathcal{A}_\rho \sim \mathcal{O}(\rho^{3-d})$$

Gauge transformations are not large enough!

Boundary conditions

We allow *pure gauge* fluctuations at the boundary

$$A_{\mu} = \partial_{\mu}\phi + \mathcal{O}(\rho^{3-d}) \qquad \phi \sim \mathcal{O}(1)$$

Side effect: The action principle is down.

The action principle

On the timelike boundary:

 $\int_{D} \sqrt{h} \,\delta A_b^{(0)} F_{(d-3)}^{b\rho}$

IPM Workshop on String Theory

The action principle

From boundary conditions $\mathcal{A}_a \sim \mathcal{A}_\rho \sim \mathcal{O}(\rho^{3-d})$ an important fact follows

$$F_{a\rho} = \partial_a \psi$$
 and ψ is gauge invariant.

So the boundary term becomes

$$\int_{B} \sqrt{h} \,\delta A_b^{(0)} F_{(d-3)}^{b\rho} = \int_{B} \sqrt{h} \,\delta A_b^{(0)} \partial^b \psi = \int_{B} \sqrt{h} D^b \left(\delta A_b^{(0)} \psi \right) + \cdots$$

The boundary term becomes a total divergence by fixing the Lorenz gauge asymptotically

$$D^a A^{(0)}_a + \alpha (d-2) A^{(1)}_\rho = 0 \,, \qquad \alpha = 1$$

Action

If $\delta A^{(0)}_{\mu}$ is not fixed, the action principle is well-defined only if the Lorenz gauge is imposed at leading order.

Erfan Esmaeili

IPM Workshop on String Theory

April 2019 13 / 23

Gauge tansformation of the action+equations of motion+boundary conditions+ gauge fixing:

$$0 = \delta_{\lambda}S - \int_{I_2} \Lambda J^T + \int_{I_1} \Lambda J^T \approx -\int \sqrt{h} \left(-\lambda \mathcal{F}^{\rho T} + \partial^T \lambda \psi \right) \Big|_{\partial I_1}^{\partial I_2}$$

where

$$\delta A_a^{(0)} = \partial_a \lambda, \qquad D^a D_a \lambda = 0,$$

We identify the conserved charge

$$Q_{\lambda} = \int_{\partial I} \sqrt{g} \left(\lambda \mathcal{F}^{T\rho} - \partial^{T} \lambda \psi \right)$$

The Asymptotic Symmetry Group

Field equation: $D^a D_a \psi(x^b) = 0$ Gauge fixing: $D^a D_a \lambda(x^b) = 0$ The general solution for $D^a D_a f(x^b) = 0$ is

$$f(y,\hat{x}) = (1-y^2)^{\frac{d-2}{4}} \sum_{\ell=1} Y_{\ell}(\hat{x}) \left(a_{\ell} P_{(2l+d-4)/2}^{(d-2)/2}(y) + b_{\ell} Q_{(2l+d-4)/2}^{(d-2)/2}(y) \right) ,$$

There are two sets of solutions for λ and ψ . The charge

$$Q_{\lambda} = \int_{S^{d-2}} \sqrt{h} \left(\lambda \partial^{T} \psi - \partial^{T} \lambda \psi \right)$$

is the Wronskian of the differential equation, non-zero only if

$$\lambda \to P \ \psi \to Q \qquad \text{or} \qquad \lambda \to Q \ \psi \to P$$

The antipodal matching

Expanding $D_a D^a f = 0$ near the future boundary of dS_{d-1} , there are two asymptotic fall-off s for the solutions

$$f_{-} = T^{d-2}\bar{\psi}(\hat{x}) + \mathcal{O}(T^d), \qquad f_{+} = \bar{\lambda}(\hat{x}) + \mathcal{O}(T^2).$$

The antipodal matching

Expanding $D_a D^a f = 0$ near the future boundary of dS_{d-1} , there are two asymptotic fall-off s for the solutions

$$f_{-} = T^{d-2}\bar{\psi}(\hat{x}) + \mathcal{O}(T^d), \qquad f_{+} = \bar{\lambda}(\hat{x}) + \mathcal{O}(T^2).$$

Antipodal boundary condition

$$\boldsymbol{\psi}(T,\hat{x}) = -\boldsymbol{\psi}(\pi - T, -\hat{x}).$$

Erfan Esmaeili

IPM Workshop on String Theory

April 2019 16 / 23

The antipodal matching: justification

- Required by Soft theorems in 4d Strominger et al '14
- Respected by the electromagnetic field of moving charges
- Required to make the symplectic form finite, Henneaux-Troessaert '18

The antipodal matching: justification

- Required by Soft theorems in 4d Strominger et al '14
- Respected by the electromagnetic field of moving charges
- Required to make the symplectic form finite, Henneaux-Troessaert '18
- Regularity of the field strength at light-cone

$$f_{-}: \quad F_{ru} \sim r^{2-d}$$

$$f_{+}: \quad F_{ru} \sim \begin{cases} (ur)^{(2-d)/2} & d > 4 \\ \frac{\ln r}{ur} & d = 4 \end{cases}$$

Minkowski Observers

Near the equator,

$$t = \rho \cot T \cong \rho(\frac{\pi}{2} - T), \qquad r = \frac{\rho}{\sin T} \cong \rho.$$

IPM Workshop on String Theory

ъ

Minkowski Observers

Components contributing to the charge

$$\bar{A}_r(\hat{x}) = \psi(\frac{\pi}{2}, \hat{x}) \qquad \pi^r \equiv \sqrt{g} F^{rt} = -\sqrt{q} \,\partial_T \psi(\frac{\pi}{2}, \hat{x}) \,,$$

where

$$A_r = \partial_r \lambda + r^{3-d} \bar{A}_r(\hat{x}) + \mathcal{O}(r^{2-d}), \qquad \lambda \sim \mathcal{O}(r^0).$$

The leading pure gauge components are

$$A_t(\hat{x}) = \frac{1}{r} \partial_T \phi(\frac{\pi}{2}, \hat{x}), \qquad A_B(\hat{x}) = \partial_B \phi(\frac{\pi}{2}, \hat{x})$$

Now defining

$$\lambda(\hat{x}) \equiv \lambda(\frac{\pi}{2}, \hat{x}), \qquad \mu(\hat{x}) \equiv \partial_T \lambda(\frac{\pi}{2}, \hat{x}).$$

The leading gauge transformations are

$$A_B(\hat{x}) + \partial_B \lambda(\hat{x}) \qquad A_t(\hat{x}) \to A_t(\hat{x}) + \frac{1}{r} \mu(\hat{x})$$

Parity conditions

$$\bar{A}_r(\hat{x}) = -\bar{A}_r(-\hat{x})$$
 $\pi^r(\hat{x}) = +\pi^r(-\hat{x})$ $A_B(\hat{x}) = -A_B(-\hat{x})$

$$\mu(\hat{x}) = -\mu(-\hat{x}) \qquad \lambda(\hat{x}) = +\lambda(-\hat{x})$$

The conserved charge

$$Q_{\lambda} = -\int_{S^{d-2}} \sqrt{q} \left(\lambda \pi^r - \mu \bar{A}_r\right)$$

- Physical boundary condition for Maxwell theory, plus large pure gauge variations
- An asymptotic gauge fixing is needed to make the action principle well-defined
- The charges can be found directly from gauge invariance of the action
- The antipodal condition ensures regularity at light cone

Thank you

Three dimensional Theory

$$\mathcal{F}_{a\rho} \sim \mathcal{O}(\rho^0), \qquad \mathcal{F}_{bc} \sim \mathcal{O}(\rho^0).$$
 (1)

$$\mathcal{A}_{\rho} \sim \mathcal{O}(\rho^0), \qquad \mathcal{A}_a \sim \mathcal{O}(\rho^0).$$
 (2)

$$D_a D^a \psi = 0. (3)$$

$$d\tilde{s}^{2} = \frac{-dT^{2} + d\varphi^{2}}{\sin^{2} T} = \frac{dx^{+}dx^{-}}{\sin^{2} T}.$$
(4)

$$\partial_+ \partial_- \psi = 0. \tag{5}$$

$$\psi(T,\varphi) = a_0 + b_0 T + \sum_{n \neq 0} \left(a_n e^{inx^+} + b_n e^{inx^-} \right)$$
(6)

$$Q_{\lambda} = \int_{S^1} \sqrt{h} \left(\partial_T \lambda \psi - \lambda \partial_T \psi \right) \tag{7}$$

$$IPM \text{ Workshop on String Theory} \qquad April 2019 \qquad 22/23$$

Erfan Esmaeili

IPM Workshop on String Theory

April 2019

$$\psi(T,\varphi) = -\psi(\pi - T,\varphi + \pi) \tag{8}$$

The antipodal map $(T, \varphi) \to (\pi - T, \varphi + \pi)$ is equivalent to $x^+ \leftrightarrow x^-$. As a result, (6) is divided into even and odd parts

$$\psi(T,\varphi) = c_0 T + \sum_{n \neq 0} \frac{c_n}{n} e^{in\varphi} \sin nT, \qquad c_n = c_{-n}^* \qquad \text{odd} \qquad (9a)$$

$$\lambda(T,\varphi) = d_0 + \sum_{n \neq 0} d_n e^{in\varphi} \cos nT, \qquad d_n = d_{-n}^* \qquad \text{even} \qquad (9b)$$