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Ultimate task

To understand/decide what happens far away from a Maxwell system
and to �nd symmetry generators.
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Symmetries

The set of all ways of changing your point of view which leave the

appearance of something unchanged is called the symmetry group.

Symmetry in physical systems

Invariance of Largangian L → L+ ∂µKµ

Invarince of action S → S +
∫
∂ K

A vector �eld preserving the Symplectic form LξΩ = 0

A phase space function G commuting with the Hamiltonian
{H,G} ≈ 0

Example: Phase rotation of a Dirac particle

G = e

∫
d3xψ†ψ

The Charge is the on-shell value of the generator.
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Asymptotic symmetries

Gauge variables are determined with respect to reference frames.

Gauge symmetry:

is the freedom to change the reference frame arbitrarily,

is generated by constraints of the theory,

has vanishing charge.

Regge-Teitelboim '74

Addition of appropriate surface term makes the generators well-de�ned
and the charges non-vanishing.

Example: U(1) gauge symmetry of charged Dirac particle

G =

∫
d3xλ(x)(∂iπ

i + eψ†ψ)−
∫
∂
niπ

i

where λ|∂ = 1.
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Recent motivation

In�nite dimensional group of symmetries
Strominger et al '14, Campiglia et al '15

Gλ ≈ −
∫
∂
niλ(θ, ϕ)πi

(Quantized) symmetry generators commute with S matrix

〈out|GS − SG|in〉 = 0 ⇒ Soft photon theorem.

Led to

New soft theorems Sen et al '17,

Conformal description of S-matrix Pasterski-Shao '17,

New explanation of IR divergences Strominger'17.

Understanding memory e�ects, old and new Gibbons '17

Hope in resolving information paradox Hawking et al '16
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Higher dimensional Maxwell theory

Rationale

Boundary behavior is sensitive to spacetime dimension.

D ≥ 4 at null in�nity, memory and symmetries,
Wald-Satishchandran 1901.04467

D ≥ 3 at spatial in�nity, covariant hyperbolic approach,
EE,1902.02769

D ≥ 5 at null in�nity, soft theorem and symmetries,
He-Mitra,1903.02608

D ≥ 5 at spatial in�nity, Hamiltonian approach,
Henneaux-Troessaert, 1903.04437
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Spatial In�nity

The collider dark age when everything has gone inside but nothing has
come out.

L−

L+
t = 1

t = −1

i0

i−

i+
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The theory

S =

∫
Md

√
g

(
−1

4
FµνFµν +AµJµ

)
,

Gauge symmetry
Aµ → Aµ + ∂µΛ

The action is invariant up to boundary terms

δλS =

∫
∂Md

√
gΛnµJ

µ

Boundary conditions: To admit arbitrary con�gurations of moving
electric charges. The starting point:

Ftr =
1

r2−d
electric charge at the origin
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Hyperbolic coordinates

ds2 = dρ2 +

metric on dSd−1︷ ︸︸ ︷
ρ2

sin2
T

(
−dT2 + qABdx

AdxB
)
, 0 ≤ T ≤ π .

where {
ρ2 = r2 − t2
cos T = t/r

{
t = ρ cot T
r = ρ/ sin T

ρ
=
ρ 0

O T = π/2

T
→

0

T
→
π
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Field equations

SO(d− 1, 1) representations: Fµν → Faρ ⊕ Fab

Find the boundary conditions by applying the Poincare generators on
the static charge

Boosts:

FTρ = ρ3−d sind−3 T ∼ ρ3−d ⇒ Faρ ∼ ρd−3

and still Fab = 0

Translations:

Fρa ∼ O(ρ3−d) , ⇒ Fab ∼ O(ρ3−d)
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Boundary conditions

From
Fρa ∼ O(ρ3−d) , Fab ∼ O(ρ3−d)

boundary conditions on the gauge �eld follow

Aa ∼ O(ρ3−d) Aρ ∼ O(ρ3−d)

Gauge transformations are not large enough!

Boundary conditions

We allow pure gauge �uctuations at the boundary

Aµ = ∂µφ+O(ρ3−d) φ ∼ O(1)

Side e�ect: The action principle is down.
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The action principle

S =

∫
Md

√
g

(
−1

4
FµνFµν +AµJµ

)
,

ρ
=
ρ 0

O T = π/2

T
→

0

T
→
π

I2

I1

B

On the timelike boundary:

∫
B

√
h δA

(0)
b F bρ(d−3)
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The action principle

From boundary conditions Aa ∼ Aρ ∼ O(ρ3−d) an important fact
follows

Faρ = ∂aψ and ψ is gauge invariant.

So the boundary term becomes∫
B

√
h δA

(0)
b F bρ(d−3) =

∫
B

√
h δA

(0)
b ∂bψ =

∫
B

√
hDb

(
δA

(0)
b ψ

)
+ · · ·

The boundary term becomes a total divergence by �xing the Lorenz

gauge asymptotically

DaA(0)
a + α(d− 2)A(1)

ρ = 0 , α = 1

Action

If δA
(0)
µ is not �xed, the action principle is well-de�ned only if the

Lorenz gauge is imposed at leading order.
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Conserved Charges

Gauge tansformation of the action+equations of motion+boundary
conditions+ gauge �xing:

0 = δλS −
∫
I2

ΛJT +

∫
I1

ΛJT ≈ −
∫ √

h (−λFρT + ∂Tλψ)
∣∣∣∂I2
∂I1

where
δA(0)

a = ∂aλ , DaDaλ = 0 ,

We identify the conserved charge

Qλ =

∫
∂I

√
g (λFTρ − ∂Tλψ)
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The Asymptotic Symmetry Group

Field equation: DaDaψ(xb) = 0
Gauge �xing: DaDaλ(xb) = 0
The general solution for DaDaf(xb) = 0 is

f(y, x̂) = (1− y2)
d−2
4

∑
`=1

Y`(x̂)
(
a`P

(d−2)/2
(2l+d−4)/2(y) + b`Q

(d−2)/2
(2l+d−4)/2(y)

)
,

There are two sets of solutions for λ and ψ. The charge

Qλ =

∫
Sd−2

√
h (λ∂Tψ − ∂Tλψ)

is the Wronskian of the di�erential equation, non-zero only if

λ→ P ψ → Q or λ→ Q ψ → P
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The antipodal matching

Expanding DaD
af = 0 near the future boundary of dSd−1, there are

two asymptotic fall-o� s for the solutions

f− = T
d−2ψ̄(x̂) +O(Td) , f+ = λ̄(x̂) +O(T2) .

Antipodal boundary condition

ψ(T , x̂) = −ψ(π − T ,−x̂) .
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The antipodal matching: justi�cation

Required by Soft theorems in 4d
Strominger et al '14

Respected by the electromagnetic �eld of moving charges

Required to make the symplectic form �nite,

Henneaux-Troessaert '18

Regularity of the �eld strength at light-cone

f− : Fru ∼ r2−d

f+ : Fru ∼
{

(ur)(2−d)/2 d > 4
ln r
ur d = 4
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Minkowski Observers

T = π/2

Near the equator,

t = ρ cot T ∼= ρ(
π

2
− T) , r =

ρ

sin T

∼= ρ .
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Minkowski Observers

Components contributing to the charge

Ār(x̂) = ψ(
π

2
, x̂) πr ≡ √gF rt = −√q ∂Tψ(

π

2
, x̂) ,

where
Ar = ∂rλ+ r3−dĀr(x̂) +O(r2−d) , λ ∼ O(r0) .

The leading pure gauge components are

At(x̂) =
1

r
∂Tφ(

π

2
, x̂) , AB(x̂) = ∂Bφ(

π

2
, x̂)

Now de�ning

λ(x̂) ≡ λ(
π

2
, x̂) , µ(x̂) ≡ ∂Tλ(

π

2
, x̂) .

The leading gauge transformations are

AB(x̂) + ∂Bλ(x̂) At(x̂)→ At(x̂) +
1

r
µ(x̂)
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Minkowski Observers

Parity conditions

Ār(x̂) = −Ār(−x̂) πr(x̂) = +πr(−x̂) AB(x̂) = −AB(−x̂)

µ(x̂) = −µ(−x̂) λ(x̂) = +λ(−x̂)

The conserved charge

Qλ = −
∫
Sd−2

√
q
(
λπr − µĀr

)
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Summary

Physical boundary condition for Maxwell theory, plus large pure
gauge variations

An asymptotic gauge �xing is needed to make the action principle
well-de�ned

The charges can be found directly from gauge invariance of the
action

The antipodal condition ensures regularity at light cone

Thank you
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Three dimensional Theory

Faρ ∼ O(ρ0) , Fbc ∼ O(ρ0) . (1)

Aρ ∼ O(ρ0) , Aa ∼ O(ρ0) . (2)

DaD
aψ = 0 . (3)

ds̃2 =
−dT2 + dϕ2

sin2
T

=
dx+dx−

sin2
T
. (4)

∂+∂−ψ = 0 . (5)

ψ(T , ϕ) = a0 + b0T +
∑
n6=0

(
ane

inx+ + bne
inx−

)
(6)

Qλ =

∫
S1

√
h (∂Tλψ − λ∂Tψ) (7)
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Three dimensional Theory

ψ(T , ϕ) = −ψ(π − T , ϕ+ π) (8)

The antipodal map (T , ϕ)→ (π − T , ϕ+ π) is equivalent to x+ ↔ x−.
As a result, (6) is divided into even and odd parts

ψ(T , ϕ) = c0T +
∑
n6=0

cn
n
einϕ sinnT , cn = c∗−n odd (9a)

λ(T , ϕ) = d0 +
∑
n6=0

dne
inϕ cosnT , dn = d∗−n even (9b)
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