Motivation 000 Chiral transport and LRT

MT in weak regime

MT in strong regime

Conclusion o

Magneto-transport of a chiral fluid in a system with weakly broken symmetries

Farid Taghinavaz

School of particles and accelerators, IPM

24 April 2019

Recent Trends in String Theory and Related Topics

1812.11310[hep-th]

Outline of talk					
Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion	

- Motivation
- Chiral transport and Linear Response Theory (LRT)
 - Magneto Transport (MT) in weak regime
 - MT in strong regime
- Conclusion

Motivation ●○○	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o
Micro v.s.	Macro scale			

 Is there any chance to explore the influences of microscopic phenomena onto the macroscopic scales?

•••• •••• <th< th=""><th>Micro ve</th><th>Macro scalo</th><th></th><th></th><th></th></th<>	Micro ve	Macro scalo			
Motivation Chiral transport and LRT MT in weak regime MT in strong regime Conclusion	Motivation ●○○	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o

- Is there any chance to explore the influences of microscopic phenomena onto the macroscopic scales?
- A crude thought would say that No chance to investigate whether the underlying microscopic physics manifest itself onto the macroscopic ones.

Motivation ●○○	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o
Micro v.s.	Macro scale			

- Is there any chance to explore the influences of microscopic phenomena onto the macroscopic scales?
- A crude thought would say that No chance to investigate whether the underlying microscopic physics manifest itself onto the macroscopic ones.

Motivation ●oo	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o
Micro v s	Macro scale			

- Is there any chance to explore the influences of microscopic phenomena onto the macroscopic scales?
- A crude thought would say that No chance to investigate whether the underlying microscopic physics manifest itself onto the macroscopic ones.
- This is not true, since **anomalous phenomena** are those which permit us to study them even in very large scale.

000	00000000	00	000000000000000000000000000000000000000	0
Micro vs	Macro scale			

- Is there any chance to explore the influences of microscopic phenomena onto the macroscopic scales?
- A crude thought would say that No chance to investigate whether the underlying microscopic physics manifest itself onto the macroscopic ones.
- This is not true, since **anomalous phenomena** are those which permit us to study them even in very large scale.

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
000				

Non-dissipative currents in weakly interacting system

Weakly interacting fermions in presence of arbitrary global rotation:

$$J_\omega(0)=ec{\omega}\left(rac{T^2}{12}+rac{\mu^2}{4\pi^2}
ight).$$

This current density is developed in a system with large vorticity field.

A. Vilenkin, Phys. Rev. D 20, 1807 (1979).

 Weakly interacting fermions in presence of arbitrary magnetic field:

$$J_B=ec{B}rac{m{e}\mu}{4\pi^2}.$$

This current density is developed in a system with large magnetic field and only contributes from lowest Landau level.

A. Vilenkin, Phys. Rev. D 22, 3080 (1980).

Motivation ○○●	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o
СКТ				

- **CKT**: A framework to involve spin DoF into the Boltzmann kinetic equation.
- Canonical forms of equations

$$\begin{split} &\sqrt{G}\,\dot{\mathbf{x}} = \frac{\partial\epsilon_{p}}{\partial p_{j}} + e\,\vec{E}\times\vec{\Omega}_{p} + e\vec{B}(\hat{p}\cdot\vec{\Omega}_{p}),\\ &\sqrt{G}\,\dot{\mathbf{p}} = e\vec{E} + e\,\hat{p}\times\vec{B} + e^{2}\vec{\Omega}_{p}(\vec{E}\cdot\vec{B}), \quad \sqrt{G} = 1 + e\vec{B}\cdot\vec{\Omega}_{p}. \end{split}$$

- Continuity equation $\Rightarrow \frac{\partial n}{\partial t} + \frac{\partial J_i}{\partial x_i} = \frac{e^2}{4\pi^2} \mathbf{E} \cdot \mathbf{B},$
- Chiral magnetic and Chiral vortical effect

$$egin{aligned} \mathbf{J}_{CME} &= \int rac{d^3 p}{(2\pi)^3} \sqrt{G} \, \dot{\mathbf{x}} f(p) = rac{e \mu}{4\pi^2} \mathbf{B}, \ \mathbf{J}_{CVE} &= \int rac{d^3 p}{(2\pi)^3} \sqrt{G} \, \dot{\mathbf{x}} f(p) = rac{\mu^2}{4\pi^2} ec{\omega}. \end{aligned}$$

M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001 (2012).

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
	0000000			

Transport coefficients in the view of symmetry

Time reversal symmetry

Dissipative transports

$$\underbrace{J}_{-} = \underbrace{\sigma}_{-} \underbrace{E}_{+}$$

This process is an irreversible one and contributes to the heat production and takes place in an out-off equilibrium state.

Non-dissipative transports

$$\underbrace{J}_{-} = \underbrace{\kappa}_{+} \underbrace{B}_{-}$$

This process is a reversible one and do not contribute to the heat production and takes place in an equilibrium state.

D. E. Kharzeev and H. U. Yee, Phys. Rev. D 84, 045025 (2011).

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion O

Anomaly in dissipative transports

- Non-dissipative transports appear only when anomalous effects turn on.
- Can we follow the effect of anomaly in the dissipative transports?

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
	0000000			

Anomaly in dissipative transports

- Non-dissipative transports appear only when anomalous effects turn on.
- Can we follow the effect of anomaly in the dissipative transports?
- Negative-Magneto Resistivity (NMR) : The more the magnetic field, the more the electrical conductivity.
- CKT equations

$$\sqrt{G}\frac{\partial f}{\partial t} + \sqrt{G}\dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{x}} + \sqrt{G}\dot{\mathbf{p}}\frac{\partial f}{\partial \mathbf{p}} = -\sqrt{G}\frac{f - f_{eq}}{\tau}.$$

• Response to external \vec{E}

$$\mathbf{J} = \int \frac{d^3p}{(2\pi)^3} \sqrt{G} \dot{\mathbf{x}} f(p) = \underbrace{\frac{B^2 e^4 \tau}{15\pi^2 \mu^2}}_{\sigma} \mathbf{E}.$$

D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).

Motivation C	hiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
000 0	000000			

Anomaly in dissipative transports

- Non-dissipative transports appear only when anomalous effects turn on.
- Can we follow the effect of anomaly in the dissipative transports?
- Negative-Magneto Resistivity (NMR) : The more the magnetic field, the more the electrical conductivity.
- CKT equations

$$\sqrt{G}\frac{\partial f}{\partial t} + \sqrt{G}\dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{x}} + \sqrt{G}\dot{\mathbf{p}}\frac{\partial f}{\partial \mathbf{p}} = -\sqrt{G}\frac{f - f_{eq}}{\tau}.$$

• Response to external \vec{E}

$$\mathbf{J} = \int \frac{d^3p}{(2\pi)^3} \sqrt{G} \dot{\mathbf{x}} f(p) = \underbrace{\frac{B^2 e^4 \tau}{15\pi^2 \mu^2}}_{\sigma} \mathbf{E}.$$

D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
	0000000			

Evidence for mixed gauge-gravitational anomaly

 It has been observed that mixed gauge-gravitational anomaly can be seen in the thermo-electric transport coefficient in the Weyl semimetal NbP.

$$egin{aligned} &J_i = G^{ij} E_j + G^{ij}_T
abla_j T, \ &G^{ij}_T = au T rac{2a_\chi a_g}{det(\Xi)} rac{\partial
ho}{\partial T} B_i B_j \end{aligned}$$

J. Gooth et al., Nature 547, 324 (2017).

	0000000		000000000000000000000000000000000000000		
Importance of relaxation times					

- **Observation**: In a translationally invariant system and in the absence of any mechanism of momentum dissipation, we get an infinite DC conductivity.
 - To get a finite DC conductivity, we have to construct a set up for momentum dissipation.

$$\partial_{\mu}T^{\mu\nu} = F^{
ulpha}J_{lpha} - rac{T^{
ulpha}\tilde{u}_{lpha}}{ au_{em}},$$

 $\partial_{\mu}J^{\mu} = CE.B - rac{J^{\mu}\tilde{u}_{\mu}}{ au_{e}}.$

the set of a standing time of						
	0000000					
Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion		

Importance of relaxation times

- **Observation**: In a translationally invariant system and in the absence of any mechanism of momentum dissipation, we get an infinite DC conductivity.
- To get a finite DC conductivity, we have to construct a set up for momentum dissipation.

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\alpha}J_{\alpha} - \frac{T^{\nu\alpha}\tilde{u}_{\alpha}}{\tau_{em}},$$

 $\partial_{\mu}J^{\mu} = CE.B - \frac{J^{\mu}\tilde{u}_{\mu}}{\tau_{c}}.$

Our question

Using the linearized sets of hydro equations in order to derive transport coefficients

K. Landsteiner, Y. Liu and Y. W. Sun, JHEP 1503, 127 (2015).

Importance of velocities times						
	0000000					
Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion		

- Importance of relaxation times
 - **Observation**: In a translationally invariant system and in the absence of any mechanism of momentum dissipation, we get an infinite DC conductivity.
 - To get a finite DC conductivity, we have to construct a set up for momentum dissipation.

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\alpha}J_{\alpha} - rac{T^{\nu\alpha}\tilde{u}_{\alpha}}{ au_{em}},$$

 $\partial_{\mu}J^{\mu} = CE.B - rac{J^{\mu}\tilde{u}_{\mu}}{ au_{e}}.$

Our question

Using the linearized sets of hydro equations in order to derive transport coefficients

K. Landsteiner, Y. Liu and Y. W. Sun, JHEP 1503, 127 (2015).

Motivation	Chiral transport and LRT 0000●000	MT in weak regime	MT in strong regime	Conclusion o	
Second order anomalous hvdro					

Constitutive relations

$$\begin{split} T^{\mu\nu} &= (\epsilon + p)u^{\mu}u^{\nu} + p\eta^{\mu\nu} + \tau^{\mu\nu}, \\ J^{\mu} &= n u^{\mu} + \nu^{\mu}, \\ \tau^{\mu\nu} &= \sigma^{\epsilon}_{\mathcal{B}}(u^{\mu}B^{\nu} + u^{\nu}B^{\mu}) + C_{1}(B^{\mu}B^{\nu} - \frac{1}{3}P^{\mu\nu}B^{2}) \\ &+ \Pi^{\mu\nu}_{\alpha\beta}B^{\alpha}(C_{2}E^{\beta} - C_{3}\mu\frac{\nabla^{\beta}T}{T}), \\ \nu^{\mu} &= \sigma_{E}E^{\mu} + \sigma_{B}B^{\mu}, \\ \Pi^{\mu\nu}_{\alpha\beta} &= \frac{1}{2}(P^{\mu}_{\ \alpha}P^{\nu}_{\ \beta} + P^{\mu}_{\ \beta}P^{\nu}_{\ \alpha} - \frac{2}{3}P^{\mu\nu}P_{\alpha\beta}). \end{split}$$

D. E. Kharzeev and H. U. Yee, Phys. Rev. D 84, 045025 (2011),

J. Hernandez and P. Kovtun, JHEP 1705, 001 (2017).

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
	00000000			

Perturbation around equilibrium state

Equilibrium state

$$\begin{split} u^{\mu} &= u_0^{\mu} = (1, \vec{0}), \quad T = T_0, \quad \mu = \mu_0, \\ \tilde{T}^{tt} &= \epsilon, \quad \tilde{T}^{zz} = p, \quad \tilde{T}^{ii} = p - \frac{C_1}{3} B^2 \ (i = x, y), \quad \tilde{J}^t = n \\ \tilde{T}^{tz} &= \frac{1}{2} (c_g T^2 + c \mu^2) B, \quad \tilde{J}^z = c \mu B. \end{split}$$

Perturbations

$$\begin{array}{ll} u^{\mu} & \rightarrow & \left(\mathbf{1}, \delta u_{\mathbf{X}}(\mathbf{x},t), \delta u_{\mathbf{y}}(\mathbf{x},t), \delta u_{\mathbf{z}}(\mathbf{x},t)\right), \\ T & \rightarrow & T + \delta T(\mathbf{x},t), \\ \mu & \rightarrow & \mu + \delta \mu(\mathbf{x},t). \end{array}$$

We want to read the response of system to the external *E* and ∇T .

Motivation 000	Chiral transport and LRT 000000€0	MT in weak regime	MT in strong regime	Conclusion O
Conductiv	ities			

- Linearize constitutive relations w.r.t fluctuations
- Solve linearized sets of hydro equations for fluctuations $(\delta\mu, \delta T, \delta u^i)$.
- Read on-shell constitutive relations
- Derive transport coefficient

$$\begin{pmatrix} J_i \\ Q_i \end{pmatrix} = \begin{pmatrix} \sigma_{ij} & T\alpha_{ij} \\ T\alpha_{ij} & T\kappa_{ij} \end{pmatrix} \begin{pmatrix} E_j \\ -\frac{\nabla_j T}{T} \end{pmatrix}.$$

• General form of conductivities in small B and $k \rightarrow 0$

$$\sigma \sim B^2 \left(c^2 \mathcal{A} + c c_g \mathcal{B} + c_g^2 \mathcal{C} \right).$$

N. Abbasi, A. Ghazi, F. Taghinavaz and O. Tavakol, arXiv:1812.11310 [hep-th].

000	0000000	00	000000000000000000000000000000000000000	0	
Ward identities					

- Non-anomalous case: Relations among transport coefficients implied by invariance under the gauge and diff transformation (C. P. Herzog, J. Phys. A 42, 343001 (2009).)
- Anomalous case:

$$W_{cov} = W[\partial \mathcal{M}_5] + \int d^5 x \, \mathcal{I}_{CS}.$$

W_{cov} is invariant under the gauge and diff transformations
Ward identities are relations among **covariant** conserved currents.

$$T \alpha_{zz} = \tau \left\{ G_{\mathcal{R}}^{T_{0z}J_z} - e\mu G_{\mathcal{R}}^{J_z J_z} \right\} = en\tau - \frac{\mu}{e} \sigma_{zz}$$
$$T \kappa_{zz} = \tau \left\{ G_{\mathcal{R}}^{T_{0z}T_{0z}} - 2\mu G_{\mathcal{R}}^{T_{0z}J_z} + \mu^2 G_{\mathcal{R}}^{J_z J_z} \right\}$$
$$= \tau (\epsilon + p - 2\mu n) + \frac{\mu^2}{e^2} \sigma_{zz}.$$

N. Abbasi, F. Taghinavaz and O. Tavakol, JHEP 1903, 051 (2019).

Thermodynamics of spin $\frac{1}{2}$ particles

• Conserved currents of a chiral fluid in $B \ll T^2 \ll \mu^2$

$$\begin{split} \epsilon &= T^4 \left(\frac{\mu^4}{8\pi^2 T^4} + \frac{\mu^2}{4T^2} + \frac{7\pi^2}{120} \right) + \frac{e^2 B^2}{24\pi^2} - \left(\log \frac{\mu}{\Delta_{\rm B}} - \frac{\pi^2}{6} \frac{T^2}{\mu^2} \right) \frac{e^2 B^2}{16\pi^2}, \\ \rho &= T^4 \left(\frac{\mu^4}{24\pi^2 T^4} + \frac{\mu^2}{12T^2} + \frac{7\pi^2}{360} \right) + \frac{e^2 B^2}{48\pi^2} + \left(\log \frac{\mu}{\Delta_{\rm B}} - \frac{\pi^2}{6} \frac{T^2}{\mu^2} \right) \frac{e^2 B^2}{16\pi^2}, \\ n &= T^3 \left(\frac{\mu^3}{6\pi^2 T^3} + \frac{\mu}{6T} \right) + \frac{e^2 B^2}{16\pi^2 \mu} \left(1 + \frac{\pi^2 T^2}{3\mu^2} \right). \end{split}$$

N. Abbasi, F. Taghinavaz and O. Tavakol, JHEP 1903, 051 (2019).

- Transport coefficients coincide with the classical one in the limit of *B* → 0 and are proportional to *τ_m*.
- Onsager reciprocal relation (microscopic time reversal symmetry) dictates that α₁ = α₂

$$O(\frac{1}{\mu}): \qquad \tau_e - \tau_c = 0,$$

$$O(\frac{1}{\mu^3}): \qquad \frac{7}{48}\tau_m + \frac{7}{60}\tau_e - \frac{13}{40}\tau_c = -\frac{1}{48}(2\tau_e + \tau_m),$$

$$\boxed{\tau_e = \tau_m = \tau_c}.$$

N. Abbasi, A. Ghazi, F. Taghinavaz and O. Tavakol, arXiv:1812.11310 [hep-th].

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime ●oooooooooooooooo	Conclusion o	
Motivation for fluid-gravity					

• **Membrane paradigm**: For an external observer, the black holes seems to be as a fluid membrane. It has shear viscosity, diffusion coefficient, Dynamics of this membrane is described by laws of fluid dynamics.

T. Damour, Phys. Rev. D 18, 3598 (1978).
 R. H. Price and K. S. Thorne, Phys. Rev. D 33, 915 (1986).

- Defect in membrane paradigm: It gives negative bulk viscosity, $\xi = -\frac{1}{16\pi}$. (M. Parikh and F. Wilczek, Phys. Rev. D 58, 064011 (1998)).
- Gauge-gravity duality can resolve this problem.

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
			000000000000	

Global hydro vs. gravity: boosted frame

Boundary thermodynamics : (*T*, *u^μ*) ⇒ Gravity:

$$ds^{2} = -2u_{\mu}dx^{\mu}dr - r^{2}f(br)u_{\mu}u_{\nu}dx^{\mu}dx^{\nu} - r^{2}\mathcal{P}_{\mu\nu}dx^{\mu}dx^{\nu},$$

$$f(r) = 1 - \frac{1}{r^{4}},$$

$$\mathcal{P}_{\mu\nu} = \eta_{\mu\nu} + u_{\mu}u_{\nu},$$

$$E_{MN} = R_{MN} - \frac{1}{2}g_{MN} - 6g_{MN} = 0, \quad u_{\mu}u^{\mu} = -1.$$

 (μ, ν) are boundary coordinates, It is a four-parameter solution of Einstein equation

S. Bhattacharyya, et al, JHEP 0802, 045 (2008).

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o	
Conserved currents from AdS/CFT					

• $T_{\mu\nu}$ of a conformal fluid on boundary:

$$T_{\mu\nu} = (\epsilon + \mathcal{P}) u_{\mu} u_{\nu} + \mathcal{P} \eta_{\mu\nu} = \mathcal{P} \left(\eta_{\mu\nu} + 4 u_{\mu} u_{\nu} \right).$$

• $T_{\mu\nu}$ on the boundary:

$$egin{array}{rll} \mathcal{T}_{\mu
u} &=& \lim_{r
ightarrow\infty}rac{r^2}{8\pi G_5}\left(\mathcal{K}_{\mu
u}-\mathcal{K}\gamma_{\mu
u}
ight). \ &8\pi G_5 \mathcal{T}_{\mu
u} &=& rac{1}{b^4}\left(\eta_{\mu
u}+4u_{\mu}u_{
u}
ight), \ &\epsilon&=& 3\mathcal{P}=rac{3\pi^4 T^4}{8\pi G_5}, \ &s&=& rac{\epsilon+\mathcal{P}}{T}=rac{4\pi^4 T^3}{8\pi G_5}. \end{array}$$

V. Balasubramanian and P. Kraus, Commun. Math. Phys. 208, 413 (1999).

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o
Towards	FG			

Localized version of boosted brane

$$ds^{2} = -2u_{\mu}(x^{\alpha})dx^{\mu}dr - r^{2}f(b(x^{\alpha})r)u_{\mu}(x^{\alpha})u_{\nu}(x^{\alpha})dx^{\mu}dx^{\nu} -r^{2}\mathcal{P}_{\mu\nu}(x^{\alpha})dx^{\mu}dx^{\nu},$$

 $E_{MN} \neq 0.$

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime ocoeoooooooooo	Conclusion o
Towards F	=G			

Localized version of boosted brane

$$ds^2 = -2u_\mu(x^lpha)dx^\mu dr - r^2 f(b(x^lpha)r)u_\mu(x^lpha)u_
u(x^lpha)dx^\mu dx^
u - r^2 \mathcal{P}_{\mu
u}(x^lpha)dx^\mu dx^
u,$$

 $E_{MN} \neq 0.$

1

 However, we can solve the Einstein equation perturbatively by using the notion of slow variation of hydro fields

$$egin{aligned} &u_{\mu}(x)=u_{\mu}(x_{0})+x^{
u}\partial_{
u}u_{\mu}(x)+\cdots\,,\ & heta=x^{\mu}\partial_{\mu}\simrac{I_{Mic}}{L_{Mac}}\simrac{1}{TL}\ll1. \end{aligned}$$

V. E. Hubeny, Class. Quant. Grav. 28, 114007 (2011)

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o
Towards F	G			

Localized version of boosted brane

$$ds^2 = -2u_\mu(x^lpha)dx^\mu dr - r^2 f(b(x^lpha)r)u_\mu(x^lpha)u_
u(x^lpha)dx^\mu dx^
u - r^2 \mathcal{P}_{\mu
u}(x^lpha)dx^\mu dx^
u,$$

 $E_{MN} \neq 0.$

 However, we can solve the Einstein equation perturbatively by using the notion of slow variation of hydro fields

$$egin{aligned} &u_{\mu}(x)=u_{\mu}(x_{0})+x^{
u}\partial_{
u}u_{\mu}(x)+\cdots\,,\ & heta=x^{\mu}\partial_{\mu}\simrac{I_{Mic}}{L_{Mac}}\simrac{1}{TL}\ll1. \end{aligned}$$

V. E. Hubeny, Class. Quant. Grav. 28, 114007 (2011)

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o	
Perturbative structure of metric					
•	In a non-perturbativ	e manner			

 $E_{MN}(g^0(r,x^\mu)) \neq 0.$

• In a perturbative manner:

$$\begin{split} & E_{MN}(g^{(0)}(r,x^{\mu})) = 0 + \mathcal{O}(\theta), \\ & E_{MN}(g^{(0)}(r,x^{\mu}) + \underbrace{g^{(1)}(r,x^{\mu})}_{\mathcal{O}(\theta)}) = 0 + \mathcal{O}(\theta^2), \\ & , \cdots . \end{split}$$

Structure of unknown metric components

$$g_{MN}^{(1)}(r,x^{\mu})=F(r)\underbrace{G(x^{lpha})}_{\mathcal{O}(heta)}.$$

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime ○○○○○●○○○○○○○	Conclusion o
How to	solve			

Gauge fixing:

$$g_{rr}=0, \quad g_{r\mu}=u_{\mu}, \quad Tr((g^0)^{-1}g)=0.$$

 \Rightarrow 10 unknown components $g_{\mu\nu}$. We decompose them in terms of irreducible representations of local *SO*(3)

Number of Einstein equations

S. Bhattacharyya, et al, JHEP 0802, 045 (2008).

Motivation 000	Chiral transport and LRT	MT in weak regime	MT in strong regime oooooooooooooo	Conclusion o
Solution cl	nannels			

Scalar channel

$$g_{ii}^{(1)}(r) = 3r^2 h_1(r), \ g_{vv}^{(1)}(r) = \frac{k_1(r)}{r^2}, \ g_{vr}^{(1)}(r) = -\frac{3}{2}h_1(r).$$

Vector channel

$$g_{vi}^{(1)}(r) = r^2 (1 - f(r)) j_i^{(1)}(r).$$

Tensor channel

$$g_{ij}^{(1)}(r) = r^2 \alpha_{ij}^{(1)}(r)$$

Constrained equations

$$\partial_{\nu} b^{0} = \frac{\partial_{i} \beta_{i}^{(0)}}{3}, \Leftrightarrow \partial_{\mu} T^{\mu 0}_{(0)} = 0$$
$$\partial_{i} b^{0} = \partial_{\nu} \beta_{i}^{(0)} \Leftrightarrow \partial_{\mu} T^{\mu i}_{(0)} = 0.$$

S. Bhattacharyya, et al, JHEP 0802, 045 (2008).

Charged fluid in strong regime						
			000000000000000			
Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion		

Bulk action corresponds to boundary charged fluid

$$S = \frac{1}{16\pi G_5} \int \sqrt{-g_5} \left[R + 12 - F_{AB} F^{AB} - \frac{4\kappa}{3} \epsilon^{LABCD} A_L F_{AB} F_{CD} \right].$$

Current after solving equations

$$\begin{split} J^{\mu} &= J^{\mu}_{(0)} + J^{\mu}_{(1)} = \lim_{r \to \infty} \frac{r^2 A^{\mu}}{2\pi G_5} = n u^{\mu} + \xi_B B^{\mu} + \xi_{\omega} \omega^{\mu}, \\ \xi_{\omega} &= -\frac{3q^2 \kappa}{2\pi G_5 m} = C \mu^2 \left(1 - \frac{2}{3} \frac{n \mu}{\epsilon + \mathcal{P}} \right), \\ \xi_B &= -\sqrt{3} \frac{(m + 3r_+^4)q \kappa}{4\pi G_5 m r_+^2} = C \mu \left(1 - \frac{1}{2} \frac{n \mu}{\epsilon + \mathcal{P}} \right), \end{split}$$

N. Banerjee, et al, JHEP 1101, 094 (2011),

- J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, JHEP 0901, 055 (2009),
- D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601 (2009).

Loopono from EC						
			00000000000000			
Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion		

What have we learned from FG correspondence?

- FG correspondence is indeed long-wavelength regime of ADS/CFT.
- Einstein equations in the limit of long-wavelength correspond to the boundary Navier-Stokes equation. FG correspondence provides a map from solution space of fluid dynamics to solution space of Einstein space.
- Thermodynamics of strongly interacting particles in magnetic field \sim Magnetized brane

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o	
Gravity set up					

Bulk action

$$\begin{split} S &= -\frac{1}{16\pi G_5} \int_{\mathcal{M}} d^5 x \ \sqrt{-g} \left(R - \frac{12}{L^2} + F^{MN} F_{MN} \right) + S_{CS} + S_{bdy}, \\ S_{CS} &= \frac{k}{12\pi G_5} \int A \wedge F \wedge F = \frac{k}{192\pi G_5} \int d^5 x \sqrt{-g} \epsilon^{MNPQE} A_M F_{NP} F_{QR}, \\ S_{bdy} &= -\frac{1}{8\pi G_5} \int_{\partial \mathcal{M}} d^4 x \ \sqrt{-\gamma} \left(\mathcal{K} - \frac{3}{L} + \frac{L}{4} R(\gamma) + \frac{L}{2} \ln(\frac{r}{L}) F^{\mu\nu} F_{\mu\nu} \right). \end{split}$$

Equations of motion

$$0 = d * F + k F \wedge F,$$

$$R_{MN} = 4g_{MN} + \frac{1}{3}g_{MN}F^{AB}F_{AB} - 2F_{MP}F_{N}^{P}.$$

E. D'Hoker and P. Kraus, JHEP 1003, 095 (2010).

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o
Solution				

Solution ansatz

$$ds^{2} = \frac{dr^{2}}{U(r)} - U(r)dt^{2} + e^{2V(r)}(dx_{1}^{2} + dx_{2}^{2}) + e^{2W(r)}(dx_{3} + C(r)dt)^{2}.$$

• Structure of functions in weak B

$$\begin{array}{ll} U &= U_0 + B^2 U_2, & \qquad E = E_0 + B^2 E_2, \\ W &= W_0 + B^2 W_2, & \qquad C = C_0 + B C_1, \\ V &= V_0 + B^2 V_2, & \qquad P = P_0 + B P_1. \end{array}$$

E. D'Hoker and P. Kraus, JHEP 1003, 095 (2010).

Important	points			
Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion o

- We have solved these unknown functions in the limit of small "B" and small μ in such a way that B ≪ μ² ≪ T².
- Horizon's radius is modified due to the presence of "B".
- Due to presence of "B", T_0 and μ_0 are not the physical quantities of the boundary theory. They are modified and give rise the true ones.
- We introduce an energy scale △ on the boundary in which our results make sense.

N. Abbasi, A. Ghazi, F. Taghinavaz and O. Tavakol, arXiv:1812.11310 [hep-th].

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime oooooooooooooooooooo	Conclusion o	
Thermodynamic Properties					

Conserved currents

$$\begin{split} T_{00} &= \frac{N_c^2}{8\pi^2} \big(3(\pi T)^4 + 12(\pi T)^2 \mu^2 + 8\mu^4 \big) + \frac{N^2 B^2}{4\pi^2} \Big((1 - \ln \frac{\pi T}{\Delta}) - \frac{2}{3} \frac{\mu^2}{\pi T^2} (8 \ln 2 - 3) \Big), \\ T^{0z} &= \frac{c\mu^2 B}{2}, \\ T_{ii} &= \frac{N_c^2}{24\pi^2} \big(3(\pi T)^4 + 12(\pi T)^2 \mu^2 + 8\mu^4 \big) + \frac{N^2 B^2}{4\pi^2} \Big(\ln \frac{\pi T}{\Delta} + \frac{2}{3} \frac{\mu^2}{\pi T^2} (8 \ln 2 - 3) \Big), \\ J^0 &= \frac{N_c^2}{3\pi^2} \big(3(\pi T)^2 \mu + 4\mu^3 \big) + \frac{N^2 B^2}{3\pi^2} \frac{\mu}{(\pi T)^2} \big(8 \ln 2 - 3 \big), \\ J^z &= c\mu B. \end{split}$$

These currents satisfy Gibbs Duhem relation. Also they
pass the entropy and number density check.

N. Abbasi, A. Ghazi, F. Taghinavaz and O. Tavakol, arXiv:1812.11310 [hep-th].

 We read the response of system to the weak external electric field and temperature gradient by using general hydro formula

$$\begin{split} \sigma &= \frac{2N_c^2 \mu^2 \tau}{\pi^2} \left(1 + \frac{2B^2}{3\pi^2 T^2 \mu^2} \right), \\ T\alpha &= N_c^2 T^2 \mu \tau \left(1 - \frac{2\mu^2}{3\pi^2 T^2} + \frac{B^2}{3\pi^4 T^4} \left(8\ln 2 - 7 \right) \right), \\ T\kappa &= \frac{\pi^2 N_c^2 T^4 \tau}{2} \left(1 + \frac{4\mu^4}{3\pi^4 T^4} + \frac{B^2}{2\pi^4 T^4} \left(1 - \frac{8\mu^2}{3\pi^2 T^2} \left(8\ln 2 - 5 \right) \right) \right). \end{split}$$

- These transport coefficients respect to Anomalous Ward identities.
- N. Abbasi, A. Ghazi, F. Taghinavaz and O. Tavakol, arXiv:1812.11310 [hep-th].

Motivation	Chiral transport and LRT	MT in weak regime	MT in strong regime	Conclusion
Conclusio	n			

- Chiral anomaly leads to the increase of electrical conductivity. This is the so called NMR. We study the magneto-transport for a system with weakly broken time, translation and charge symmetries.
- We utilize of anomalous second order hydrodynamics to obtain the most general relations for those transports. They are general and have relations to gauge and gravitational anomaly. They only depend on thermodynamic derivatives.
- We implement these results to the case of hydros which their particles are weakly and strongly interacting ones. In both regimes, the obtained transports respect to the Ward identities.