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Introduction

Introduction

Definition of local energy density for gravitational field is
problematic.

There are many approaches to define gravitational energy,
quasi-locally or globally.

Brown and York (1993): starting from a gravitational action
with well-posed variational principle, using Hamilton-Jacobi
method we can define quasi-local stress-tensor of gravitational
field.

The Brown-York stress-tensor is defined on a timelike
boundary.

The aim is to propose similar tensor on a null boundary.
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The Brown-York Method

Hamilton-Jacobi method: A Review

Let L(q, q̇, t) be the classical Lagrangian.

A general variation of action leads to:

δS =

∫ t2

t1

(∂L
∂q
− d

dt

∂L

∂q̇

)
(δq−q̇δt)dt+∂L

∂q̇
δq|t2t1−(

∂L

∂q̇
q̇−L)δt|t2t1

Momentum and Energy are defined by:

δS

δq
= p =

∂L

∂q̇
,

δS

δt
= −H = (

∂L

∂q̇
q̇ − L)

If the variational principle is not well-posed the above method
does not work!
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The Brown-York Method

Stress Tensor on Timelike Boundary

Variation of Hilbert-Einstein Action

Variation of Hilbert-Einstein action in a region with time-like
and space-like boundaries

δSEH = 1
16π

∫
M

ddx
√
−gGabδgab + 1

16π

∑
i

[
2δ
(∫
Bi

dd−1x
√
|h|K

)
+

∫
Bi

dd−1x
√
|h|(Kab −K hab) δhab

]

The well-posed action is:

S = 1
16π

∫
M

ddx
√
−g R− 1

8π

∑
i

[ ∫
Bi

dd−1x
√
|h|K]
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The Brown-York Method

Stress Tensor on Timelike Boundary

Space-Time region with time-like and space-like
boundaries

Σ2 S2

Σ

T

S1

S

Σ1
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The Brown-York Method

Stress Tensor on Timelike Boundary

Variation of the well-posed action in this region leads to:

δS = 1
16π

[ ∫ Σ2

Σ1

dd−1xP ab δhab +

∫
T
dd−1xΠab δγab

]

Where

P ab =
√
h(Kab −Khab)|Σ

Πab =
√
−γ(χab − χ γab)|T

P ab: Canonical momentum P ab = δS
δhab

= ∂L
∂ḣab

Derivative w.r.t induced metric on spacelike boundary.

Gravitational energy-momentum-stress :

τab =
2√
−γ

δS

δγab
= 1

8π (χab − χ γab)

Derivative w.r.t induced metric on timelike boundary.
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∂ḣab

Derivative w.r.t induced metric on spacelike boundary.

Gravitational energy-momentum-stress :

τab =
2√
−γ

δS

δγab
= 1

8π (χab − χ γab)

Derivative w.r.t induced metric on timelike boundary.



7/28

Stress Tensor On Null Boundaries

The Brown-York Method

Stress Tensor on Timelike Boundary

Variation of the well-posed action in this region leads to:

δS = 1
16π

[ ∫ Σ2

Σ1

dd−1xP ab δhab +

∫
T
dd−1xΠab δγab

]
Where

P ab =
√
h(Kab −Khab)|Σ

Πab =
√
−γ(χab − χ γab)|T

P ab: Canonical momentum P ab = δS
δhab

= ∂L
∂ḣab
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The Brown-York Method

Stress Tensor on Timelike Boundary

Stress Tensor components

Consider a foliation of the timelike boundary :

ds2 = −Ndt2 + qab(dσ
a + V adt)(dσb + V bdt), ua = N∇at

The Stress Tensor components:

ε ≡ uaubTab = − 1
√
q

δS
δN

Energy density,

ja ≡ qacubTcb = − 1
√
q

δS
δVa

Momentum density,

sab ≡ qacqbdTcd =
2

N
√
q

δS
δqab

Spatial stress,
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The Brown-York Method

Stress Tensor on Timelike Boundary

Some points:

The energy is not finite at R→∞

The above stress tensor is not unique as S → S + S0

S0 is a functional of fixed boundary data: S0 = S0(γab)

Brow-York: Choose the zero of energy and find S0 so that the
energy becomes finite.

Choose Minkowski as reference space-time

S0 is computed for the boundary as embedded in flat space.
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The Brown-York Method

Stress Tensor on Timelike Boundary

Counterterm Method

Finding appropriate S0 is not always possible

Mathematically we can not embed a boundary with an
arbitrary intrinsic metric in the reference spacetime

For Asymptotic AdS Spacetime there is another method

Adding local Counterterm to the boundary action

For AdS4:

Lct = −2

`

√
−γ(1− `2

4
R)

For Asymptotic flat space and on a timelike boundary such
Counterterms are not known.
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Hamilton-Jacobi analysis on null boundary

Space-Time region with Null Boundary

Space-Time region has null segments

Σ2 S2

Σ

N

S1

S

Σ1
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Hamilton-Jacobi analysis on null boundary

The Set Up

The Null Hypersurface

A hypersurface φ = const is null if: ∂aφ∂
aφ = 0

A null hypersurface has degenerate induced metric, usual
treatment for timelike/spacelike boundaries is not applicable.

For description of a Null hypersurface we need two null
vectors `a and ka

`a Is proportional to the normal on the boundary

ka is an auxiliary null vector, normalizations is assumed to be:

`a `
a = 0 , ka k

a = 0 and `a k
a = −1 .

With the aid of `a and ka, we can define a projector as:

qab = δab + `a kb + ka `b
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Hamilton-Jacobi analysis on null boundary

The Set Up

The Set Up

A natural setup is a double foliation:

`a = A∇aφ0 +B∇aφ1

ka = C∇aφ0 +D∇aφ1

The null boundary is specified by φ0 = const and B = 0

The metric is decomposed according to:

gab dx
a dxb = Hij dφ

i dφj + qAB(dσA + βAi dφ
i)(dσB + βBj dφ

j) ,

where:

Hij = −
(

2AC BC +AD
BC +AD 2BD

)
.
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Hamilton-Jacobi analysis on null boundary

The Set Up

Various geometric object are defined by projecting ∇a`b,∇akb
along qab , `a and ka.

Θab = −qca qdb∇a`b , Ξab = −qca qdb∇akb,
ηa = qca k

b∇b`c , η̄b = qca `
b∇bkc,

ωa = qca k
b∇c`b

aa = qca `
b∇b`c , āa = qca k

b∇bkc,
κ = `a kb∇a`b , κ̄ = ka `b∇akb,

Details of this formalism, e.g. complete decomposition of the
curvature tensors, is described in: S. Aghapour, Gh. Jafari,
M. Golshani, 1808.07352
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Hamilton-Jacobi analysis on null boundary

The Set Up

Special variations

Variations of some degrees of freedom in metric change the
nullness of the boundary!

For null boundary we have ∂aφ∂
aφ = 0

Under variation gµν → gµν + δgµν :

∂aφ∂
aφ→ ∂aφ∂

aφ− δgab∂aφ∂bφ .

Unless δgφφ = 0, the boundary will not remain null.

We must keep all degrees of freedom in order to find the
complete canonical structure.
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Special variations

Previous investigations missed this kind of variations, mostly
because of weakness of formulation.

Single of double null foliation are partially gauge fixed
framework and are not appropriate for variation.

gφφ = g−1(dφ, dφ) = 0

On the null boundary we have B = 0 but δB 6= 0

⇒Take the variations and then set B = 0
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The Stress Tensor

Variation of Hilbert-Einstein Action

General variation of Hilbert-Einstein action in the above
double foliation is:

δSHE = 1
8π
δ

(∫
N

dd−1x
√
q[D(Θ + κ)] +

∫ S2

S1
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√
q lnD

√
H
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16π
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D(Θab − qab (Θ + κ))

]
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+ 2ωa δβ1a − 2Ξ δB + 2ΘδD + 1
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The Stress Tensor

Variation of the principal function on the null boundary

So variation of the well-posed action is:

δS = 1
16π

∫
B
dd−1x

√
q
([

(Θab − qab (Θ + κ))
]
δqab + 2ωa δβ

a
1 − 2Ξ δB

)
+ 1

16π

∫ S2

S1

dd−2x
√
q(lnA qab)δqab.

δqab, δβ1a and δB are all variations of metric components on
the boundary

Number of boundary condition match with Non-Null case e.g
in 4d δhab has 6 components and
(δqab, δβ1a, δB) = 3 + 2 + 1 = 6

This was a problem in previous works (e.g. K. Parattu et
al,1501.01053 and F. Hopfmuller, L. Freidel,1611.03096 )
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The Stress Tensor

In order to find stress tensor we must differentiate the
principal function with respect to these components.

The components of stress tensor

ε ≡ `a`bTab = − 1
√
q

δS
δB

= 1
8πΞ, energy density

ja ≡ qac`bTcb =
1
√
q

δS
δβ1a

= 1
8πω

a, momentum density

sab ≡ qacqbdTcd =
2
√
q

δS
δqab

= 1
8π

[
Θab − qab (Θ + κ)

]
spatial stress
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Quasi-Local Quantities

We can subtract any functional S0 of fixed boundary data

The total energy:

E =

∫
S
dd−2x

√
q (ε− ε0),

The angular momentum:

J =

∫
S
dd−2x

√
qjaζ

a
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Examples

Schwarzschild black hole

The metric in Eddington–Finkelstein coordinates

ds2 = −f(r)du2 − 2dudr + r2dΩ2

The energy density

ε =
1

8π
[Ξ− Ξ0] =

1

8π
[−f(r)

r
+

1

r
]

The total Energy (Mass)

E =

∫ π

0

∫ 2π

0
dθdφ r2 sin θ ε = 4πr2(

M

4πr2
) = M
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Examples

Slow Rotating Kerr Black Hole

Slow Rotating Kerr Metric

ds2 = −f(r)du2 − 2dudr+ r2dΩ2 +
2J

r
sin2 θ dudφ+

2J

rf(r)
sin2 θ drdφ

For rotational killing symmetry ξ = ∂φ

ξaωa =
3J sin2 θ

r2

The total angular momentum is:

Qξ =
1

8π

∫ π

0

∫ 2π

0
dθdφ r2 sin θ

3J sin2 θ

r2
= J
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Examples

Asymptotic flat space and the Bondi Mass

Consider the metric in Bondi coordinates:

ds2 = −UV du2−2V dudr+qAB(dσA+UA du)(dσB+UB du)

Comparing with our double decomposed metric:

A = V, B = 0, C = U, D = 1, βA0 = UA, βA1 = 0
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Examples

Asymptotic flat space and the Bondi Mass

For Asymptotic expansion of metric functions

U = 1− 2mB

r
+O(

1

r2
), V = 1 +O(

1

r2
)

βA0 =
WA

r2
+O(

1

r3
), qAB = r2γAB +O(r)

we get:

Ξ = −r +
2mB(u, σA)

r2
+
DAWA

r2
+O(

1

r3
)

So the total energy becomes:

E =

∫
S
dd−2x

√
q ε =

∫
S
dd−2xmB(u, σA)
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Counterterm For Asymptotic Flat Spacetime

Is there possible counterterms similar to AAdS for flat space
on null boundary?

The counterterm(s) should not spoil the variational principle

There is one such term as

α

∫
N

dd−1x
√
q BΘ
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Note: although the term vanish on the null boundary, but its
variation is none zero!

Fortunately such term can be used to make the energy finite!

In order to get finite result we chose α = 1
2

So the Quasilocal energy density becomes:

ε = 1
8π

[
Ξ +

1

2
Θ]

It leads to finite result for Asymptotic Flat Spacetime.
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Conclusion and Outlook

A Stress Tensor proposed on Null Boundaries

Variations which change the character of the boundary have
physical meaning.

This Stress Tensor provide correct energy and angular momentum
for simple examples.

Possible counterterm proposed on null boundary for asymptotic flat
spacetime.

Relation to flat Holography?

Conservation relations?

Symmetries of the stress tensor?
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