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INTRODUCTION & MOTIVATION



• Conformal field theories are highly constrained by symmetry.

Using conformal symmetry to study these theories one can
restrict our attention to conformal primaries.



• Conformal primaries, one is interested is their conformal
dimension ∆O

〈O(x1)O(x2)〉 =
1

|x1 − x2|2∆O

and their three point functions.

〈O1(x1)O2(x2)O3(x3)〉 =

CO1O2O2

|x1 − x2|∆O1 +∆O2−∆O3 |x2 − x3|∆O2 +∆O3−∆O1 |x3 − x1|∆O3 +∆O1−∆O2



• Can one constrain the allowed conformal dimensions ∆O or
the OPE coefficients CO1O2O2 that appear in conformal field
theories.



• Consider d = 2 CFT.

Using the Virasoro (conformal ) algebra and positivity of the
norm.
Conformal dimension of any primary

∆ ≥ 0.

The central charge
c ≥ 0.

The central charge is the coefficient that appears in the 3 point
function of stress tensor of the theory.

〈T (z1)T (z2)T (z3)〉 =
c

(z1 − z2)2(z2 − z3)2(z3 − z4)2



• All conformal field theories admit a stress tensor Tµν .

It is a conformal primary with conformal dimension ∆T = d , for
conformal field theories in d space-time dimensions.

Conformal symmetry constrains the three point function of
stress tensors to a few un-determined numbers.



• Similarly if a conformal field theory admits a conserved U(1)
current jµ .

It is a conformal primary of dimensions d − 1 for conformal field
theories in d space-time dimensions.

Again conformal symmetry constrains the three point function
of conserved currents and that involving conserved currents
and the stress tensors to a few un-determined numbers.



Can we constrain these few undetermined numbers, and
thereby constrain the allowed class of theories?



• Consider conformal field theories in d = 3. The 3 point
functions admit a parity odd structure.

〈TTT 〉 = nT
s 〈TTT 〉freeboson+nT

f 〈TTT 〉freefermion+pT 〈TTT 〉parityodd

〈jTj〉 = nj
s〈jTj〉freeboson + nj

f 〈jTj〉freefermion + pj
T 〈jTj〉parityodd

Giombi, Prakash, Yin (2011).



Compare to d = 4

The three point function of the stress tensor in CFT’s is
constrained by conformal invariance. eg. in d = 4

〈TTT 〉 = nT
s 〈TTT 〉freeboson+nT

f 〈TTT 〉freefermion+nT
v 〈TTT 〉freevector

〈TTT 〉freeboson is the correlator obtained by performing Wick
contraction on the stress tensor of a massless free scalar
theory in d = 4. Similar definition for the other correlators.
Osborn, Petkou (1993).
ns,nf ,nv need not be integers are theory dependent
parameters.



• The structure of the parity odd term.

〈j(x)T (x1)j(0)〉 =
εσ2 Iασ (x − x1)ερ3Iβρ (−x1)εµν1 tµναβ(X )

|x1 − x |3|x1|3|x |

+pj
Q2

1S1 + 2P2
2S3 + 2P2

3S2

|x1 − x ||x || − x1|
,



tµναβ(X ) = (−2c
3

+ 2e)h1
µν(X̂ )ηαβ + (3e)h1

µν(X̂ )h1
αβ

+ch2
µναβ(X̂ ) + eh3

µναβ ,

Q2
1 = εµ1ε

ν
1

(
x1µ

x2
1
−

x1µ − xµ
(x1 − x)2

)(
x1ν

x2
1
− x1ν − xν

(x1 − x)2

)
,

P2
2 = −

εµ1ε
ν
1Iµν(x1)

2x2
1

,

P2
3 = −

εµ1ε
ν
2Iµν(x1 − x)

2(x1 − x)2 ,



S1 =
1

4|x1 − x ||x |3| − x1|
(
εµνρxµ(x1 − x)νε

ρ
2ε
α
3 xα

−ε
µ
νρ

2

(
|x1 − x |2xµ + |x |2(x1 − x)µ

)
εν2ε

ρ
3

)
,

S2 =
1

4|x1 − x ||x || − x1|3
(
εµνρ(x1µ)xνε

ρ
3ε
α
1 x1α

−ε
µ
νρ

2

(
−|x |2x1µ + |x1|2xµ

)
εν3ε

ρ
1

)
,

S3 =
1

4|x1 − x |3|x || − x1|
(
εµνρ(x1 − x)µ(−x1ν)ερ1ε

α
2 (x1 − xα)

−ε
µ
νρ

2

(
|x |2(x − x1)µ + |x − x1|2(−xµ)

)
εν1ε

ρ
2

)
,



where

X̂ =
x − x1

|x − x1|2
+

x1

|x1|2
,

Iαβ(x) = ηαβ −
2xαxβ

x2 ,

h1
µν(x̂) =

xµxν
x2 − 1

3
ηµν ,

h2
µνσρ(x̂) =

xµxσ
x2 ηνρ + (µ↔ ν, ρ↔ σ)− 4

3
xµxν
x2 ησρ −

4
3

xσxρ
x2 ηµν

+
3

16
ηµνησρ,

h3µνσρ = ηµσηνρ + ηµρηνσ −
2
3
ηµνησρ,

c =
3(2nj

f + nj
s)

256π3 , e =
3nj

s

256π3 .



• The existence of the parity odd term was first confirmed in
large N Chern Simons theory coupled to fundamental fermions
using a one loop calculation by
Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin (2011),
Aharony, Gur-Ari, Yacoby (2011).



We study the parity odd structure in conformal field theories in
d = 3.

• Constraints on the parity odd structure from the average null
energy condition ( ANEC).

• The parity odd term and the bootstrap equations.

• Deriving the constraints from ANEC using reflection positivity,
and analyticity.



CONSTRAINTS FROM ANEC



• The conformal collider:

One considers an excitation at say the origin with energy E .
The excitation propagates outward in a spherical wave.
Keep a detector in the direction n̂, say y direction.
Measure the integrated energy over time. eg. d = 3

Ên̂ = lim
r→∞

r
∫ ∞
−∞

dtηiT t
i (t , r n̂)

〈En̂〉 =
〈0|O†En̂O|0〉
〈0|〈O†O|0〉



• O creates the state we are interested in.

O ∼ Tµν or O ∼ j .

• The requirement that the integrated energy measured by the
detector is positive is equivalent to the average null energy
condition (ANEC).

• Thus choosing O to be T or j results in constraints on the
parameters of the three points functions 〈TTT 〉 or 〈jTj〉.



The excited states are defined by

OE |0〉 =

∫
dtdxdye−iEtO(t , x , y)|0〉

We choose

O(ε,T ) = εijT ij = ε · T O(ε, j) = εi j i = ε · j

By conservation laws the polarizations are purely spatial.

In d = 4, there are 3 independent polarizations for the stress
tensor and 2 independent polarization for the current.

In d = 3, there are 2 independent polarization for the stress
tensor and 2 for the current.



Let us consider a linear combination of polarizations∑
a

αaε(a)

Then the expectation value of the energy flux operator looks
like ∑

a,b

αaαb〈ε(a) ·O|Ê |ε(b) ·O〉 =
∑
a,b

αaαbMab

Mab = 〈ε(a) ·O|Ê |ε(b) ·O〉

Thus the requirement that the ANEC is satisfied turns into a
condition that the eigen values of this matrix is positive.



Let us recall the conditions obtained in d = 4 CFT’s for the
〈TTT 〉 correlator.

Since there are 3 independent polarizations, the matrix is a
3× 3.

There is a simple choice of polarization for which the matrix is
diagonal.

Define

t2 =
15(−4nv + nf )

ns + 12nv + 3nf
, t4 =

15(ns + 2nv − 2nf )

2(ns + 12nv + 3nf )

.



Then the condition that the three diagonal elements are positive
are

1− t2
3
− 2

t4
15
≥ 0, : I

2(1− t2
3
− 2

t4
15

) + t2 ≥ 0, : II

3
2

(1− t2
3
− 2

t4
15

) + t2 + t4 ≥ 0 : III

There are 2 parameters t2, t4. The region satisfied by the
inequalities is a triangle.

All d = 4 CFT’s which satisfy the ANEC lie in the triangle.

In fact theories which admit an Einstein gravity holgraphic dual
lie at the origin.



• For d = 3 we have 2 independent polarisations for both
charge and stress tensor excitations.

We have a 2× 2 matrix for both the charge and stress tensor
excitations.



• The energy matrix for charge excitations εx = 1, ε′y = 1.

Ê(j) =

 〈0|O†E (ε; j)EOE (ε; j)|0〉 〈0|O†E (ε; j)EOE (ε′; j)|0〉

〈0|O†E (ε′; j)EOE (ε; j)|0〉 〈0|O†E (ε′; j)EOE (ε′; j)|0〉

 ,

〈0|O†E (ε; j)EOE (ε; j)|0〉 =
1

〈OE (ε; j)|OE (ε, j)〉
×∫

d3xeiEt lim
x+

1 →∞

x+
1
4

∫
dx−1 〈ε · j(x)T−−(x1)ε · T (0)〉,

〈0|O†E (ε; j)EOE (ε′; j)|0〉 =

(〈OE (ε′; j)|OE (ε,′ j)〉〈OE (ε; j)|OE (ε, j)〉)−
1
2

×
∫

d3xeiEt lim
x+

1 →∞

x+
1
4

∫
dx−1 〈ε · j(x)T−−(x1)ε′ · j(0)〉.



Carrying out all the steps we obtain the energy matrix for
charge excitations

Ê(j) =

 E
4π (1− a2

2 ) E
8παj

E
8παj

E
4π (1 + a2

2 )

 ,

where

a2 = −
2(nj

f − nj
s)

(nj
f + nj

s)
,

αj =
4π4pj

(nj
f + nj

s)
.

The trace of this matrix is positive. Therefore the condition
that the eigen values are positive leads to

a2
2 + α2

j ≤ 4.

This region is a disc of radius 2 centered at the origin in the
a2, αj plane.



Evaluation of the energy matrix for the stress tensor excitations
proceeds similarly.
The three point function is given by

〈T (x)T (x1)T (0)〉 =
εµν1 I

T
µν,µ′ν′(x)εσρ2 I

T
σρ,σ′ρ′(x1)εαβ3 tµ

′ν′σ′ρ′

αβ

x6x6
1

+

pT
(P2

1Q2
1 + 5P2

2P2
3 )S1 + (P2

2Q2
2 + 5P2

3P2
1 )S2 + (P2

3Q2
3 + 5P2

3P2
1 )S3

|x − x1||x1|| − x |
.

where each of the tensor structure is defined.
The calculation is more involved.



• The energy matrix for stress tensor excitations.
εxy = 1; ε′xx = 1, ε′yy = −1

Ê(T ) =

 〈0|O†E (ε; T )EOE (ε; T )|0〉 〈0|O†E (ε; T )EOE (ε′; T )|0〉

〈0|O†E (ε′; T )EOE (ε; T )|0〉 〈0|O†E (ε′; T )EOE (ε′; T )|0〉

 ,

〈0|O†E (ε; T )EOE (ε; T )|0〉 =
1

〈OE (ε; T )|OE (ε,T )〉
×∫

d3xeiEt lim
x+

1 →∞

x+
1
4

∫
dx−1 〈ε · T (x)T−−(x1)ε · T (0)〉,

〈0|O†E (ε; T )EOE (ε′; T )|0〉 =

(〈OE (ε′; T )|OE (ε,′ T )〉〈OE (ε; T )|OE (ε,T )〉)−
1
2

×
∫

d3xeiEt lim
x+

1 →∞

x+
1
4

∫
dx−1 〈ε · T (x)T−−(x1)ε′ · T (0)〉.



The final result for the energy matrix for stress tensor
excitations

Ê(T ) =

 E
4π (1− t4

4 ) E
16παT

E
16παT

E
4π (1 + t4

4 )

 ,

where,

t4 = −
4(nT

f − nT
s )

nT
f + nT

s
,

αT =
8π4pT

3(nT
f + nT

s )
.

The condition that the eigen values of this matrix is positive
leads to

t2
4 + α2

T ≤ 16.



•Where does Large N Chern Simons theories lie ?

〈jjT 〉 = nj
s〈jjT 〉free boson + nj

f 〈jjT 〉free fermion + pj〈jjT 〉parity odd,

〈TTT 〉 = nT
s 〈TTT 〉free boson + nT

f 〈TTT 〉free fermion + pT 〈TTT 〉parity odd.

nT
s (f ) = nj

s(f ) = 2N
sin θ
θ

sin2 θ

2
, nT

f (f ) = nj
s(f ) = 2N

sin θ
θ

cos2 θ

2
,

pj(f ) = α′N
sin2 θ

θ
, pT (f ) = αN

sin2 θ

θ
,

where the t ’Hooft coupling is related to θ by

θ =
πN
κ
.



• The full dependence on the t’Hooft coupling was argued using
weakly broken higher spin symmetry by
Maldacena, Zhiboedov (2012).

• This was perturbatively checked to all orders in t’Hooft
coupling confirmed for the large N Chern Simons theory
coupled for fundamental bosons. Aharony, Gur-Ari, Yacoby
(2012).



• The Maldacena, Zhiboedov analysis can in principle
determine the precise normalisation once one decides on the
normalisation of the tensor structure of the parity odd term.

•We fix it by first taking the normalization of the parity odd term
as given by Giombi, Minwalla, Prakash, Trivedi, Wadia.

•We redo the one-loop perturbative analysis to obtain

α′ =
1
π4 .

α =
3
π4 .



Substituting these values

a2 = −2 cos θ, αj = 2 sin θ,
t4 = −4 cos θ, αT = 4 sin θ.

Large N Chern-Simons theory with fundamental matter lie on
the circle bounding the disc.

Their location on the bounding circle is parametrized by the ’t
Hooft coupling θ = πN

κ .



To conclude

-2 -1 0 1 2

-2

-1

0

1

2

8t4 , a2 <

9ΑT , Α j =

Free fermion Freeboson

Interacting fermion

Interactingboson

Figure:



• Such conformal collider constraints on OPE coefficients were
recently generalised by Córdova, Maldacena and Turiaci
(1710.03199).

More importantly they also confirmed the saturation of the
bounds by large N Chern-Simons theories

• The fact that Chern-Simons theories coupled to fundamental
matter at large N saturate the ANEC seems to be related to the
saturation of the unitarity bound for spin s currents.

∆ = 1 + s + O(1/N)



PARITY ODD STRUCTURE
AND

BOOTSTRAP



• The parity odd structure in the 3 point functions of conserved
currents introduces additional terms in the bootstrap analysis of
the 4 point functions.



• Consider the 4 point function

〈J(x1)J(x2)φ(x3)φ(x4)〉

where φ is a primary of dimension ∆φ.

Let us define the cross ratios

u =
x2

12x2
34

x2
13x2

24
, v =

x2
14x2

23

x2
13x2

24

The s channel is defined by the limit x1 → x2 In terms of cross
ratios the limit is

u << v



Let us assume that the stress tensor is the lowest primary that
occurs in the s-channel.

Expanding in the s channel, we have

〈J(x1)J(x2)φ(x3)φ(x4)〉 = CJ
H12

x6
12x2∆φ

34

+

λφφT√
CT

[DevenW(2,2,∆φ,∆φ)

−DoddW(2,2,∆φ,∆φ)]



DevenW(2,2,∆φ,∆φ) is the stress tensor exchange conformal
block due to the parity even terms in the 〈JJT 〉 3-point function.

It is proportional to ns and nf .

DoddW(2,2,∆φ,∆φ) is the stress tensor exchange conformal
block due to the parity odd terms in the 〈JJT 〉 3-point function.

It is proportional to pj .



• How is the conformal block expansion in the s accounted for
in the t channel.

The t -channel: x1 → x4.



The contribution of the identity of the s channel can be
accounted by the presence of the following composite
operators in the t channel

[j , φ]τ l = Jν(∂2n)∂µ1∂µ2 · · · ∂µl−1φ, τ[j,φ] = ∆φ + 1 + 2n,

[̃jφ]τ,l = εkνρJν∂ρ(∂2n)∂µ1∂µ2 · · · ∂µl−1φ, τ
[̃j,φ]

= ∆φ + 2 + 2n.

The contributions of the parity even terms in the stress tensor
of the s channel gives result to the anomalous dimensions for
these operators.

The analysis is performed using a formalism developed by
Costa, Penedones, Poland, Rychkov ( 2011)
to handle spinning conformal blocks.



• How are the contributions of the parity odd terms in the s
channel explained.



• Examine the s channel contributions in more detail. Organise
the polarizations as

(+) ≡ (y − t), (−) ≡ (y + t) (x)

Then the (++) polarization: We look at

〈J+J+φφ〉

in the s channel.

We obtain, after removing overall scalings.

CJ +
2
√

u
π2 (3CJ − 8πλjjT )log(v)

There is no contribution from the parity odd terms.



In the (xx) polarization:

CJ −
4
√

u
π2

(
CJ − 8πλjjT

)
log(v)



The presence of the logarithms due to the stress tensor
exchange.

The stress tensor spinning conformal block results from various
derivatives on the following scalar block

G(3,3,∆φ,∆φ)

T (u, v) =
1
4
√

u(v − 1)2
2F1

(
5
2
,
5
2
,5; 1− v

)
In the limit u << v << 1 , we obtain

1
4
√

u(v − 1)2
2F1

(
5
2
,
5
2

; 5; 1− v
)

=

32
9π
√

u(−16 + 6 log 4− 3 log v) + O(v
√

u, v
√

u log v)

The logarithmic terms contribute to the: anomalous dimensions
of the composite operators in the t channel.



The parity odd terms contribute to the (+x) polarization.

In the s channel we get the term

2pju
1
2−∆φ

λφφT√
CT

Note there is no identity:

The leading contribution is from the parity odd term in the
stress tensor exchange.

There are no logarithms.



The reason there are no logarithms:

The parity odd spinning block for the stress tensor exchange is
constructed from derivatives of the following scalar block

G(2,3,∆φ,∆φ)

T (u, v) =
4
√

u(1− v)2(√
v + 1

)4√v
.

There is no logarithmic singularity:

only a square root branch cut in v .



What does crossing symmetry imply:

given that there are contribution from the parity odd terms in
the s channel ?



In the t channel the contributions to the 4-point function
formally are∑

τ,l

P[jφ]τ l
W[jφ]τ l

(Jφ; jφ) +
∑
τ,l

P
[̃jφ]τ l
W

[̃jφ]τ l
(jφ; jφ)

∑
τ,l

γ[jφ]τ l
P[jφ]τ l

∂τW[jφ]τ l
(jφ; jφ) +

∑
τ,l

γ
[̃jφ]τ l

P[jφ]τ l
∂τW[̃jφ]τ l

(jφ; jφ)

+
∑
τ,l

PÕτ,lWÕτ,l (jφ; jφ)

W[jφ]τ l
(jφ; jφ) is the conformal block for the exchange of the

composite operator [jφ]τ l of spin l and twist τ = ∆φ + 1.
P[jφ]τ l

is the corresponding OPE coefficient.



W
[̃jφ]τ l

(Jφ; jφ) is the conformal block for the exchange of the

composite operator [̃jφ]τ l of spin l and twist τ = ∆φ + 2.
P

[̃jφ]τ l
is the corresponding OPE coefficient.

∂τ is the derivative with respect to twist and γ the anomalous
dimensions.

WÕτ,l (Jφ; jφ) is the parity odd conformal block for the exchange

of a composite operator Õ of spin l and twist τp .
PÕτ,l is the corresponding OPE coefficient.



How the formal terms of the t channel expansion computed ?

In the limit u << v << 1 and in the large spin l approximation
closed form expressions for the conformal blocks can be
obtained.

This is obtained from the scalar blocks

G(∆1,∆2,∆3,∆4)
Oτ,l (v ,u) =

√
l2l+τvτ/2u

∆1+∆2−∆3−∆4
4 K ∆1+∆2−∆3−∆4

2

(
2l
√

u
)

√
π

.

Then the spinning blocks are obtained by appropriate
derivatives on this block.

The sum over spin for the composite operators is performed by
approximating the sum as an integral.



Look at the (++) polarization.

• In the s channel there is a contribution from the identity and
the stress tensor exchange.

• In the t channel this matched by the conformal block due to
the exchange of the composite operator
[jφ]τ l .

• The logarithmic dependence in v in the s channel results from
the anomalous dimension for the composite operator.



P[j,φ]τ,l =

√
πCJ2−∆φ−l+1l∆φ− 1

2

Γ(∆φ)
,

γ[j,φ]τ,l =
32λφφT (3CJ − 8πλjjT )Γ(∆φ)

3π5/2CJ
√

CT Γ(∆φ − 1
2)

There is no other conformal block which contributes in this
polarization channel.



The (xx) polarization :
• The identity as well as the stress tensor exchange in the s
channel is matched by both the conformal blocks due to the
exchange of the composite operators
[jφ]τ l as well as [̃jφ]τ l .

For the identity in the s channel the ratio of the contribution of
the exchange of [jφ]τ l in the (++) polarization to the (xx)
polarization is

1 : −1
4

For the stress tensor exchange in the s channel the ratio of the
contribution of the exchange of [jφ]τ l in the (++) polarization to
the (xx) polarization is

1 : −1
3



• Using the equations in this channel we can solve for the OPE
coefficients and the anomalous dimensions for [̃j , φ].

P
[̃j,φ]τ0,l

=

√
πCJ2−∆φ−l−1l∆φ+ 1

2

Γ(∆φ)

γ
[̃j,φ]τ,l

=
64λφφT (16πλjjT − 3CJ)Γ(∆φ)

3π5/2CJ
√

CT lΓ
(
∆φ − 1

2

) .

• The (−−), (+−), (−+) polarization channels are also
satisfied by these OPE coefficients and the anomalous
dimensions.



• The parity odd contribution from the stress tensor exchange
contributes only in the (+x), (x+) (−x) and (x−) channels.

For instance the contribution in (+−) channel in the limit
u << v << 1 is given by stress tensor exchange

2pju
1
2−∆φλφφT√

CT

Note there is no contribution proportional to log(v) .



• To reproduce the contribution s channel from the parity odd
stress tensor exchange, we find that a composite operator Õ of
spin l and twist τp = ∆φ + 1 needs to be considered in the t
channel.

The contribution in the t channel is through parity odd
conformal blocks of this operator.



Summing over l and requiring the t channel to agree with the
parity odd stress tensor exchange in the s channel:

The OPE coefficients for these operators are

PÕτ,l =

√
π2−∆φ+1pjλφφT

Γ
(
∆φ − 1

2

) l(∆φ−3)√
CT 2l

Õτ l is an operator of twist ∆φ + 1 and spin l .

Therefore the composite operator Õτ l is

[j , φ]τ l = Jν∂µ1∂µ2 · · · ∂µl−1φ, τ[j,φ] = ∆φ + 1

In parity odd theories, the OPE coefficient PÕτ,l ∝ pj is turned
on.



OPE BOUNDS FROM

REFLECTION POSITIIVTY AND ANALYTICITY



•We used ANEC to derive bounds on the OPE coefficients of
the three point function

〈TTT 〉 〈JJT 〉.

•We will re-derive the bound on 〈JJT 〉 using reflection
positivity and analyticity of the conformal field theory.

• This serves as a check on the properties of the parity odd
conformal blocks.



• Recall how reflection positivity and analyticity can be used to
put bounds on OPE coefficients.

• Consider the following 4-point function

Gs(z, z̄) =
〈O(0)φ(z, z̄)φ(1,1)O(∞))〉

〈φ(z, z̄)φ(1,1)〉

O, φ are scalar primaries and

x1 = (0,0,0) x2 = (τ, y2,0,0), x3 = (0,1,0),

x4 = lim
a→∞

(0,a,0).

Let
Ĝs(z, z̄) = Gs(e−2πiz, z̄)

be the correlator on the second sheet.



Consider a small upper half disc around (z, z̄) = (1,1) defined
by

z = 1 + σ, z̄ = 1 + ησ,

σ is complex, η is real with

Im(σ) ≥ 0, 0 < η << σ << R << 1



• The correlators are now functions of σ, η . We will refer them
as

Gs
η(σ), Ĝs

η(σ)

Taking the η → 0 allows us to use the closed form expressions
for conformal blocks.

• Using the convergence of the s-channel, t-channel and
u-channel expansions, one can show both Gs

η(σ) and Ĝs
η(σ) are

analytic in the small upper half disc.



• Using reflection positivity one can show

Re

∫
S

dσ
(
−Gs

η(σ) + Ĝs
η(σ)

)
≥ 0

where S is the little semi-circle bounding the upper half disc in
in the counter clock wise direction.



• Using the known form of the conformal blocks one can show
the leading contribution from the stress tensor in the t-channel(

−Gs
η(σ) + Ĝs

η(σ)
)

= −iCφφT COOT

√
η

σ
+ · · ·

The term proportional to 1/σ due to the presence of logarithms
in the conformal block corresponding to the stress tensor
exchange.

• Now using the inequality due to reflection positivity we get

CφφT COOT ≥ 0



• To derive the bounds we had using ANEC we consider the
correlator

Gµν
η (σ) =

〈Jµ(0)φ(z, z̄)φ(1,1)Jν(∞))〉
〈φ(z, z̄)φ(1,1)〉

,

Ĝµν
η (σ) =

〈Jµ(0)φ(ze−2πi , z̄)φ(1,1)Jν(∞))〉
〈φ(z, z̄)φ(1,1)〉

.



Using analyticity and reflection positivity the following inequality
is true.

Re
[
−
∫

S
dσ
(
−G++

η (σ) + Ĝ++
η (σ)

)
−α

∫
S

dσ
(
−G+x

η (σ) + Ĝ+x
η (σ)

)
+α∗

∫
S

dσ
(
−Gx+

η (σ) + Ĝx+
η (σ)

)
+αα∗

∫
S

dσ
(
−Gxx

η (σ) + Ĝxx
η (σ)

)]
≥ 0

• Now minimising with respect to α we we obtain
Cauchy-Schwartz inequality

Re
(
R++Rxx − R+xRx+

)
≥ 0,



R++ = −
∫

S
dσ
(
−G++

η (σ) + Ĝ++
η (σ)

)
,

=
−32CJ

√
ηλφφT (a2 + 2)

π
√

CT
,

R+x = −
∫

S
dσ
(
−G+x

η (σ) + Ĝ+x
η (σ)

)
,

=

(
−π
i

) (−8pj
)
λφφT

√
η√

CT
,

Rx+ =

∫
S

dσ
(
−Gx+

η (σ) + Ĝx+
η (σ)

)
,

=

(
−π
i

) (
8pj
)
λφφT

√
η√

CT
,

Rxx =

∫
S

dσ
(
−Gxx

η (σ) + Ĝxx
η (σ)

)
,

=
32CJ

√
ηλφφT (−10 + 3a2)

3π
√

CT
.



• To obtain R+x and Rx+ we crucially used the parity odd
conformal blocks in the stress channel.

This did not have logarithms but square root branch cuts.

But nevertheless the 1/σ behaviour was present Ĝx+
η (σ) and

Ĝxx
η (σ).



• Substituting into the Cauchy -Schwarz inequality we obtain(
a2 −

2
3

)2

+ α2
j ≤

64
9
,

where we have used conformal dimensions are positive which
implies using a ward identity λφφT is negative.



• However the above disc of theories we obtain is not that from
ANEC.

The disc is larger and the ANEC disc is contained in it.

This is because in the (xx) polarization there is a mixture of
contributions from the ++ in the s -channel.

Recall both the composite operators [j , φ]τ l and [̃j , φ]τ,l
contributed.



•We can subtract the contributions of [j , φ]τ l and still maintain
reflection positivity in Rxx . This results in

Rxx → R̃xx =
32CJ

√
ηλφφT (a2 − 2)

π
√

CT

• Substituting back in the Cauchy-Schwarz inequality we obtain

a2
2 + α2

j ≤ 4.

This coincides with the disc of allowed theories from ANEC.



These observations are summarized in

Figure: Comparative study of bounds



CONCLUSIONS



•We used ANEC to obtain bounds on the OPE coefficients
involving conserved currents for parity odd conformal field
theories in d = 3.

The theories were confined to lie inside a disc.

The boundary of the disc is populated by large N Chern
Simons theories with fundamental matter.



•We showed that crossing symmetry in parity odd theories
implies the existence of a new tower of composite operators.

To demonstrate this parity odd spinning conformal blocks in the
stress channel were obtained.



• Reflection positivity and analyticity was used to derive the
bounds obtained from ANEC.

This also served as a check on the parity odd spinning
conformal blocks.


