Thermal conductivity of anisotropic spin ladders

By :Hamed Rezania

Razi University, Kermanshah, Iran

Magnetic Insulator

In one dimensional is a good candidate for thermal conductivity due to magnetic excitation

> Partially filled electron shell : 3d,4d,4f,5f

Ferro: $CrBr_3$, K_2CuF_4 , EuO, EuS, $CdCr_2Se_4$, Rb_2CrCl_4 , etc. Antiferro: EuTe, MnO, $RbMnF_3$, Rb_2MnCl_4 , etc. Ferri: EuSe, etc.

> Heisenberg model Hamiltonian describes these material

Low dimensional quantum magnets

Thermal conductivity

Transport of heat in insulator1)Phonons2) In low dimensions: magnetic excitation

 $K(\omega) = D\delta(\omega) + K_{reg}(\omega)$

Integrable one dimensional

Ballistic Transport

One dimensional quantum magnets show a unusually large thermal conductivity

Nonvanishing of Drude weight

Castella, etal: PRL 74, 972(1995)

Playground for magnetic

studies of this material and

quantum information

processing and in electronic

device

Nonitegrability with Luttinger fixed point S. Fujimoto, PRL 90,19 (2003)

Ballistic and Diffusive Transport

Algebraic form for time correlation function between current functions

Exponential Behavior for time correlation function between

Case (a)

Case (b)

Case (c)

(a)

(b)

(c)

$$D_{11}(T) > 0; \quad \sigma_{dc}(T) = 0$$

$$D_{11}(T) > 0; \quad \sigma_{dc}(T) > 0$$

$$D_{11}(T) = 0; \quad \sigma_{dc}(T) > 0.$$

Infinite Conductivity and exactly conserved current

 $j_1 = j_{\rm c} + j_{\rm dec} \,,$

Exponential decay for currentcurrent correlation function with full dissipation for current

Anisotropic spin ladder model Hamiltonian

Because of crystal field effects and easy axis effect, we introduce two global and local anisotropies: δ , Δ

$$\mathcal{H} = J_{\perp} \sum_{i} (S_{i}^{x} \tau_{i}^{x} + S_{i}^{y} \tau_{i}^{y} + \Delta S_{i}^{z} \tau_{i}^{z}) + J \sum_{i} (\tau_{i}^{x} \tau_{i+\delta}^{x} + \tau_{i}^{y} \tau_{i+\delta}^{y} + \delta \tau_{i}^{z} \tau_{i+\delta}^{z})$$

$$+ J \sum_{i} (S_{i}^{x} S_{i+\delta}^{x} + S_{i}^{y} S_{i+\delta}^{y} + \delta S_{i}^{z} S_{i+\delta}^{z}).$$

$$I \longrightarrow_{i} I \longrightarrow_{i+I} I$$

 τS are the spin operator of localized electrons on each chain

and the coupling constants $[, J_{\perp}]$ are

antiferromagnetic type.

Bond operator Representation

S. Sachdev and R. $s^+|0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$ Bhatt, PRB 41, 9332(1990) $\Longrightarrow t_x^+ |0\rangle = -\frac{1}{\sqrt{2}} \left(|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle\right)$ $S^{\alpha} = \frac{1}{2} \left(s^{\dagger} t_{\alpha} + t_{\alpha}^{\dagger} s - i \varepsilon_{\alpha\beta\gamma} t_{\beta}^{\dagger} t_{\gamma} \right)$ $t_{y}^{+}|0\rangle = \frac{i}{\sqrt{2}}(|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle) \longrightarrow$ \mathcal{T} $\tau^{\alpha} = \frac{1}{2} \left(-s^{\dagger}t_{\alpha} - t_{\alpha}^{\dagger}s - i \varepsilon_{\alpha\beta\gamma} t_{\beta}^{\dagger}t_{\gamma} \right)$ $t_{z}^{+}|0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)$ $s^{\dagger}s + t_{\alpha}^{\dagger}t_{\alpha} = 1$ $[S_{\alpha}, S_{\beta}] = i \varepsilon_{\alpha\beta\gamma} S_{\gamma}$ $\begin{bmatrix} t_{\alpha}, t_{\beta}^{\dagger} \end{bmatrix} = \delta_{\alpha\beta}$ Constraint

Bosonic Representation

The parts of hamiltonian after applying Bond operator transformation

$$\mathcal{H}_{bil} = \sum_{\mathbf{k},\alpha=\mathbf{x},\mathbf{y},\mathbf{z}} A_{\mathbf{k},\alpha} t^{\dagger}_{\mathbf{k},\alpha} t_{\mathbf{k},\alpha} + \sum_{\mathbf{k},\alpha=\mathbf{x},\mathbf{y},\mathbf{z}} \frac{B_{\mathbf{k},\alpha}}{2} (t^{\dagger}_{\mathbf{k},\alpha} t^{\dagger}_{-\mathbf{k},\alpha} + h.c.)$$

With coefficients:

$$A_{\mathbf{k},(\mathbf{x},\mathbf{y})} = J_{\perp}(\frac{1+\Delta}{2}) + J\cos(k_x), \quad A_{\mathbf{k},\mathbf{z}} = J_{\perp} + \delta J\cos(k_x)$$
$$B_{\mathbf{k}} = -J\cos(k_x), \quad B_{\mathbf{k},\mathbf{z}} = J\delta\cos(k_x).$$

Green's function formalism

Interacting one particle Green's function :

$$\Omega_{k,\alpha} = Z_{k,\alpha} \sqrt{(A_{k,\alpha} + \sum_{n,\alpha} (k, 0))^2 - (B_{k,\alpha} + \sum_{n,\alpha} (k, 0))^2}$$
$$G_{\alpha}(k,\omega) = \frac{Z_{k,\alpha} U_{k,\alpha}^2}{\omega - \Omega_{k,\alpha} + i\delta} - \frac{Z_{k,\alpha} V_{k,\alpha}^2}{\omega + \Omega_{k,\alpha} - i\delta}$$

 $\Sigma_{n,\alpha}(k,0), \Sigma_{a,\alpha}(k,0)$ is normal and anomalous self energies and $Z_{k,\alpha}$ is renormalization constant. $Z_{k,\alpha}^{-1} = 1 - \frac{\partial \sum_{n,\alpha} (k,0)}{\partial \omega}$ Interacting Bogoliubov coefficients:

$$U_{k,\alpha}^{2}, V_{k,\alpha}^{2} = +, -\frac{1}{2} + \frac{A_{k,\alpha} + \sum_{n,\alpha} (k, 0)}{2\Omega_{k,\alpha}}$$

Finite temperature Calculations

Dilution of triplet gas $\longrightarrow T \ll J, J_{\perp}$ $g_{n,\alpha}(k,\tau) = -\langle T_{\tau}[t_{k,\alpha}(\tau)t_{k,\alpha}^{\dagger}(0)]\rangle$ Matsubara's Green's $g_{a,\alpha}(k,\tau) = -\langle T(t_{k,\alpha}^{\dagger}(\tau)t_{-k,\alpha}^{\dagger}(0))\rangle$ functions $G_{\alpha}^{\text{Ret}}(k,\omega) = g_{\alpha}(k,i\omega_n \to \omega + i\delta) = \frac{Z_{k,\alpha}U_{k,\alpha}^2}{\omega - \Omega_{k,\alpha} + i\eta} - \frac{Z_{k,\alpha}V_{k,\alpha}^2}{\omega + \Omega_{k,\alpha} + i\eta}$ Interacting one particle Green's function : $\Omega_{k,\alpha} = Z_{k,\alpha} \sqrt{\{A_{k,\alpha} + \text{Re}[\Sigma_{n,\alpha}^{\text{Ret}}(k,0)]\}^2 - \{B_{k,\alpha} + \text{Re}[\Sigma_{n,\alpha}^{\text{Ret}}(k,0)]\}^2}$ $Z_{k,\alpha}^{-1} = 1 - \left(\frac{\partial \operatorname{Re}(\Sigma_{n,\alpha}^{\operatorname{Ret}})}{\partial \omega}\right)$ renormalization constant:

Interacting Bogoliubov coefficients: $U_{k,\alpha}^2(V_{k,\alpha}^2) = (-)\frac{1}{2} + \frac{Z_{k,\alpha}\{A_{k,\alpha} + \operatorname{Re}[\Sigma_{n,\alpha}^{\operatorname{Ret}}(k,0)]\}}{2\Omega_{k,\alpha}}$

Calculation of hard core self-energy

Brueckner approach [Fetter & Walecka] for finding self energy of dilute Boson gas in the hard core condition :

$$H_{U} = U \sum_{i,\alpha,\beta} t_{\alpha i}^{\dagger} t_{\beta i}^{\dagger} t_{\beta i} t_{\alpha i}, \quad U \to \infty$$

$$\Gamma^{\alpha\beta,\gamma\delta} \left(K = k_{1} + k_{2}\right) \to k_{2}, \beta$$

$$k_{1}, \alpha \qquad k_{3}, \gamma$$

$$\Gamma^{\alpha\beta,\gamma\delta} \left(K = k_{1} + k_{2}\right) \to k_{2}, \beta$$

$$k_{2}, \beta \qquad k_{4}, \delta$$
Vertex function (Scattering amplitude)

$$\Gamma_{\alpha\beta,\alpha\beta}(\mathbf{K}, i\omega_{n}) = \left(\frac{1}{\beta 2\pi} \sum_{Q_{m}} \int d^{3}Q G_{\alpha\alpha}^{(0)}(Q) G_{\beta\beta}^{(0)}(K - Q)\right)^{-1}$$

$$Hard \text{ core part of self energy:}$$

$$(\infty, dn)$$

$$K_{1}, \alpha \qquad k_{3}, \gamma$$

$$k_{2}, \beta$$

$$k_{2}, \beta$$

$$k_{4}, \delta$$

$$k_{2}, \beta$$

$$k_{4}, \delta$$

$$K_{2}, \beta$$

$$K_{3}, \gamma$$

$$K_{2}, \beta$$

$$K_{2}, \beta$$

$$K_{2}, \beta$$

$$K_{2}, \beta$$

$$K_{3}, \gamma$$

$$K_{2}, \beta$$

$$K_{2}, \beta$$

$$K_{3}, \gamma$$

$$K_{2}, \beta$$

$$K_{4}, \delta$$

$$K_{2}, \beta$$

$$K_{2}, \beta$$

$$K_{3}, \gamma$$

$$K_{2}, \beta$$

$$K_{4}, \delta$$

$$K_{1}, \delta$$

$$K_{2}, \beta$$

$$K_{2}, \beta$$

$$K_{2}, \beta$$

$$K_{3}, \gamma$$

$$K_{2}, \beta$$

$$K_{4}, \delta$$

$$K_{2}, \beta$$

$$K_{3}, \gamma$$

$$K_{4}, \delta$$

$$K_{5}, \delta$$

$$K_{6}, \delta$$

$$\Sigma_{\alpha\alpha}^{U}(\mathbf{k},i\omega_{n}) = -\sum_{p_{m},\gamma} \int_{-\infty}^{\infty} \frac{dp}{2\pi\beta} \Gamma(p,k;p,k)_{\alpha\gamma,\alpha\gamma} G_{\gamma\gamma}(p) - \sum_{p_{m}} \int_{-\infty}^{\infty} \frac{dp}{2\pi\beta} \Gamma(p,k;k,p)_{\alpha\alpha,\alpha\alpha} G_{\alpha\alpha}(p)$$

Energy current and thermal conductance

Energy current is obtained based on the following definition

 \mathbf{R}_i denotes the position of a rung on the lattice

 h_i

 $\mathbf{R}_E \equiv \sum_i \mathbf{R}_i h_i,$

$$H = \sum_{m} h_{m}, \quad h_{m} = J(S_{m}^{x}S_{m+a}^{x} + S_{m}^{y}S_{m+a}^{y} + \delta S_{m}^{z}S_{m+a}^{z} + \tau_{m}^{x}\tau_{m+a}^{x} + \tau_{m}^{y}\tau_{m+a}^{y} + \delta \tau_{m}^{z}\tau_{m+a}^{z})$$

$$+ J_{\perp}(S_{m}^{x}\tau_{m}^{x} + S_{m}^{y}\tau_{m}^{y} + \Delta S_{m}^{z}\tau_{m}^{z})$$

$$\mathbf{J}_{E} = \frac{\partial}{\partial t}\mathbf{R}_{E} = \sum_{l} \mathbf{R}_{l}\frac{\partial}{\partial t}h_{l} = i\sum_{l,m} \mathbf{R}_{l}[h_{m}, h_{l}]$$
Energy conservation

Local hamiltonian

Kubo Formula for thermal conductivity

$$J_{Q,\alpha} = -\frac{1}{T} L_{\alpha\delta}^{21} \nabla_{\delta}(eV) + L_{\alpha\delta}^{22} \nabla_{\delta} \frac{1}{T}$$

$$L_{22}^{Ret}(\omega) = \frac{i}{\beta\omega} \int_{-\infty}^{+\infty} dt e^{i\omega t} \theta(t) \langle [j_{E}^{x}(t), j_{E}^{x}(0)] \rangle = \frac{1}{\beta\omega} \lim_{i\omega_{n} \longrightarrow \omega + i0^{+}} \int_{0}^{\beta} d\tau e^{i\omega_{n}\tau} \langle T_{\tau}(j_{E}^{x}(\tau)j_{E}^{x}(0)) \rangle$$

$$(Thermal conductivity) \longrightarrow K = -\beta^{2} \lim_{\omega \longrightarrow 0} Im(L_{22}^{Ret}(\omega))$$

$$\kappa(i\omega_{n}) = \frac{-12J^{4}}{L^{2}\beta^{2}} \sum_{k,k',n_{1},n_{2}} \zeta(k_{x},k'_{x})\chi^{xx}(k,i\omega_{n_{1}})\chi^{yy}(k',i\omega_{n_{2}})\chi^{zz}(k'+k,i\omega_{n}-i\omega_{n_{1}}-i\omega_{n_{2}})$$

$$\zeta(k_{x},k'_{x}) \equiv 1 + \delta e^{-3ik_{x}} + \delta^{2}e^{-3i(k_{x}+k'_{x})} - \delta^{2}e^{i(k'_{x}-k_{x})} - \delta e^{-i(k_{x}+2k'_{x})} - \delta^{2}e^{-2i(k'_{x}+2k_{x})},$$

Spin susceptibility

$$\begin{split} \chi_{zz}(k,i\omega_{n}) &= -\int_{0}^{\beta} d\tau e^{i\omega_{n}\tau} \langle T(S_{z}(k,\tau)S_{z}(-k,0)) \rangle \\ &= \frac{1}{4} \int_{0}^{\beta} d\tau e^{i\omega_{n}\tau} \\ &\left\langle T\Big(t_{-k,z}(\tau) + t_{k,z}^{\dagger}(\tau) + \sum_{q} (-it_{k+q,x}^{\dagger}(\tau)t_{q,y}(\tau) + it_{k+q,y}^{\dagger}(\tau)t_{q,x}(\tau)) \Big) \times \\ &\left(t_{k,z}(0) + t_{-k,z}^{\dagger}(0) + \sum_{q'} (-it_{k-q',x}^{\dagger}(0)t_{q',y}(0) + it_{q'-k,y}^{\dagger}(0)t_{q',x}(0)) \Big) \right\rangle. \end{split}$$

Vertex correction

Neglecting the below diagrams due to anomalous Green's function in the diagrams structures

The effect of local anisotropy

Noticeable change of conductivity with local anisotropy

The effect of global anisotropy

There is no considerable change due to inter chain anisotropy

Acknowledgement

Prof. Abdollah Langari Sharif university of technology

Prof. Paul van Loosdrecht

Cologne University

Prof. Xenophon Zotos

University of Crete, Greece

Thanks for your attention

