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Conformal group is an extension of Poincaré group by dilatation and special conformal
transformations. Conformal Field Theories (CFTs) are a special class of quantum field
theories the action of which exhibit invariance under the conformal group. If the confor-
mal symmetry is not anomalous, i.e. it is an exact symmetry of the quantum theory, the
symmetry may be used to restrict the form of n-point functions of the theory.

CFTs can appear in various spacetime dimensions, e.g. one, two, three, four and six
dimensions and the conformal algebra in dimension d ≥ 3 is so(d, 2) while in two dimensions
it is the infinite dimensional Virasoro algebra. Therefore, 2d CFTs are special and have
been studied much more than the higher dimensional CFTs. CFTs in 4d have also been
constructed and analyzed extensively; all known nontrivial (interacting) 4d CFTs are of the
form of supersymmetric gauge theories. 3d CFTs have also been discussed and analyzed
primarily through the AdS/CFT duality, however, in the recent five-six years an explicit
action for the 3d CFTs, which are specific 3d supersymmetric gauge theories, has been
constructed. The 6d CFTs are perhaps the less understood ones and we do not have an
explicit action for them and our description of them is limited to either their Discrete Light-
Cone Quantization (DLCQ) description, their compactification to lower dimensions and their
gravity duals via AdS/CFT.

Another handle on CFTs, in general, comes from the fact that any QFT at its RG fixed
point exhibits scaling symmetry. As such, any QFT may flow to a non-trivial (interacting)
CFT, if such a non-trivial fixed point exists. In this viewpoint, 3d CFTs are known to arise
from non-trivial IR fixed point of 3d Yang-Mills theories, while 6d CFT(s) is (are) arising
from 5d Yang-Mills in the UV fixed point.

In this course we study and discuss the following topics in CFTs:

• Introduction of conformal algebra in various dimensions and their representations.

• General Remarks on CFT’s.

• A brief introduction to 2d CFTs and their classification by central charge. We also
discuss modular invariance of 2d CFTs and derive Cardy formula.

• A brief discussion on super-conformal algebras.

• On 4d (super)conformal theories.

• On 3d and 6d CFTs.

Important Notes for the Students

• This is an advanced PhD level course and I assume background knowledge of QFT
at the level of Peskin-Schroder as well as basic group theory and their representation
theory.
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• During the lectures I will provide several questions and problems and registered stu-
dents are supposed to solve and return them to me. The final grade will be based on
them.

• Texts and reading:

– Paul Ginsparg, “Applied Conformal Field Theory,” Le Houches lecture notes,
http://arxiv.org/abs/hep-th/9108028.

– P. Di Francesco, P. Mathieu and D. Senechal, “Conformal Field Theory,” New
York, USA: Springer (1997).

– S. Minwalla, “Restrictions imposed by Superconformal Invariance On Quantum
Field Theories,” http://arxiv.org/pdf/hep-th/9712074.pdf.

– V. Rychkov, “Lectures on Conformal Field Theory in Higher Dimensions (D ≥
3),” https://sites.google.com/site/slavarychkov/.

– Yu Nakayama, “A lecture note on scale invariance vs conformal invariance,”,
http://arxiv.org/pdf/1302.0884v1.pdf

• The above references contain many further references and reading material.
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1 General Remarks

• Standard (Q)FT assumes a background spacetime.

• This spacetime is usually assumed to be Minkowski (for relativistic FT’s).

• We may have non-relativistic QFT’s (e.g. in Cond.Mat.), e.g. with Galilean symmetry.

• Rel.QFT’s are expected to exhibit Lorentz and spacetime translation invariance. The
latter two form the Poincaré group.

• Poincaré group in d+1 dimensional spacetime is ISO(d, 1), which is the isometry group
of the d+ 1 dim. Minkowski space.

• That is, Poincaré group can be viewed as a linear coordinate transformation which
keeps the form of the Minkowski metric ηµν = diag(−1,+1,+1, · · · ,+1) invariant.

• All physical observables of Rel.QFT’s are hence required to be based on Lorentz co-
variant quantities, i.e. they fall into specific Lorentz representations.

NOTE: There are quantities like cross-sections and half life-times which are not
Lorentz covariant, however, they are based on Lorentz-cov. S-matrix elements.

• Since dim(ISO(d, 1)) = d(d+1)/2+d+1 = (d+1)(d+2)/2, these isometries completely
fix the metric to be ηµν .

• One may ask if it is possible to extend the (Minkowski) spacetime symmetries beyond
Poincaré & if yes, whether it is possible to find QFT’s which exhibit those symmetries.

• Being max. sym. group, one cannot naively extend the set of linear isometries of
Poincaré group. Consider infinitesimal linear transformations

xµ → xµ + δxµ , δxµ = Aµνxν + bµ ,

– If Aµν is antisymmetric we recover Lorentz transformations which keep ηµν invari-
ant.

– Symmetric part of Aµν may be brought to a diagonal form using a general Lorentz
transformation. And hence, we only remain with

Aµν = diag(A1, A2, · · · , Ad).

These transformations will change metric ηµν .

– However, among them there is the special case, scaling transformations Aµν =
ληµν which takes

ηµν → λ−2ηµν .

– The scaling, although changes metric, it takes it to something proportional to it.
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2 The conformal group

• So, we seem to have an idea on how to extend the notion of isometry:

Coordinate Transformations (not necessarily linear) under which

ηµν → f(x)ηµν . (2.1)

• These transformations are called conformal transformations.

II Exercise 2.1: Show these transformations form a group, the conformal group.

• It is readily seen that the Poincaré group is a subgroup of conformal group.

• One may consider cases where the background metric is not conformally flat. This is
an immediate generalization which is used in drawing Penrose diagrams.

• Scaling is also an element of the conformal group.

• Active and passive conformal transformations: In the above we defined “passive”
conformal transformations, i.e. coordinate transformations such that:

x→ x′ = x′(x) , gµν(x)→ g′µν(x
′) = f(x)gµν(x) , (2.2)

The above being a diffeomorphism does not change the physical length ds2 → ds2.

However, intuitively, we are more used to thinking about coordinates and the length,
instead of coordinates and metric tensor. For examples, we usually think that scaling
changes the physical distances and so on. In a more rigorous mathematical language,
let us consider a general Weyl scaling (and not a diffeomorphism ):

x→ x , gµν(x)→ g′µν(x) = f(x)gµν(x) =⇒ ds2 → f(x)ds2 . (2.3)

Weyl transformations obviously form a group.
II Exercise 2.2: Show this.

Of course not all Weyl scalings produce a transformation like in (2.1), there is a specific
set of Weyl scalings which has this property, this is the conformal group. In other words,

Conformal group consists of Diff ×Weyl transforma-
tions subject to:

xµ → x′µ = x′µ(x) , gµν → g′µν(x
′) = gµν(x) .

(2.4)

II Exercise 2.3: Show that with the above, the physical length changes as in (2.3).

II Exercise 2.4: Convince yourself that the set of diffeomorphisms which are allowed
in (2.4) are ONLY those appearing in (2.1). That is, the form of Weyl transformation
appearing in (2.4) is completely fixed by the corresponding diffeomorphism.
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• Let’s investigate (2.1) or equivalently (2.4) more closely. Consider infinitesimal coor-
dinate transformations, diffeomorphisms, which generate (2.1):

xµ → xµ + ξµ(x) . (2.5)

Question: Which ξµ(x) generates (2.4)?

• Recalling transformation of metric under a general diffeomorphism we learn that

∂µξν + ∂νξµ = (f(x)− 1)ηµν (2.6)

NOTE: For a generic metric ∇µξν +∇νξµ = h(x)gµν is called conformal Killing
vector equation.

• Trace of Eq.(2.6) gives

f(x)− 1 =
2

d
∂µξ

µ .

• Plugging the above into (2.6) and taking once more derivative leads to

(d− 1)∂2f(x) = 0 , ∂2ξµ =
2− d
2

∂µf . (2.7)

II Exercise 2.5: Work out the above.

• One may then solve the above. Since d = 2 and d > 2 cases are quite different we
consider the two cases separately.

2.1 Conformal group in d > 2

• Let us consider the d > 2 case first. d = 2 will be discussed later.

ξµ = Aµ +Bµ
νx

ν + Cµ
αβx

αxβ .

B{µν} = Aηµν , C{µν}α = Bαηµν , Cµαβ = Cµβα.
(2.8)

II Exercise 2.6: Work out the above .

That is infinitesimal dilation and special conformal transformations are

xµ → (1 + λ)xµ , xµ → xµ + 2(b · x)xµ − x2bµ ,

• for d > 2 one may solve (2.8) and see that:

– Aµ generates rigid translations,

– Bµν generates Lorentz transformations and rigid scaling,

– Cµνα generates “special conformal transformations”.
II Exercise 2.7: Show this.

II Exercise 2.8: Work out FINITE scaling and special conformal transfor-
mations. That is, find xµ → x′µ = x′µ(xν , λ, bµ) where λ is parameterizing rigid
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scaling and bµ the special conformal transformations.

II Exercise 2.9: If x′ = x′(x) then show that f(x)−d =
∣∣∂x′

∂x

∣∣2.
II Exercise 2.10: Show that∣∣∣∣∂x′∂x

∣∣∣∣ = 1

(1− 2b · x+ b2x2)d
for special conformal transformations

and ∣∣∂x′

∂x

∣∣ = λ−d for rigid scaling .

II Exercise 2.11: How does the “distance” between two points xµ, yµ, |x− y|,
transform under conformal transformations.

II Exercise 2.12: Show that given three points x1, x2, x3 one cannot construct
conformally invariant combinations. While for four and more points cross-
ratios

|xi − xj||xk − xl|
|xi − xk||xj − xl|

, i ̸= j ̸= k ̸= l ,

are invariant under generic conformal transformations.
Show that for N points there are N(N − 3)/2 independent cross-ratios.

II Exercise 2.13: Show that the group generated by the above is SO(d, 2).
HINT: To show the above, one may start with the conformal algebra, which is
the (Lie) algebra generated by the Lie bracket of conformal diffeomorphisms:

ξ = Aµ∂µ +Bµνxµ∂ν + Cµναxµxν∂α ,

i.e. computing [ξ1, ξ2], where ξi are two conformal Killing vector fields generated
by different A,B,C parameters.

NOTE: The conformal group in d > 2 is the largest FINITE dimensional subgroup of
diffeomorphisms.

• If we denote the generators by LIJ , I, J = −1, 0, 1, · · · d, then

– Lµν , µ, ν = 0, 1, · · · d− 1 are d dimensional Lorentz generators,

– Pµ = L−1µ + Ldµ are d momentum (spacetime translations) generators.
NOTE: Hamiltonian is also among these.

– Kµ = −L−1µ + Ldµ are special conformal generators.

– D = L−1,d is the generator of rigid scaling, also called dilation.

II Exercise 2.14: Starting from the SO(d, 2) algebra

[LAB, LCD] = i (gACLBD + gBDLAC − gBCLAD − gADLBC) , (2.9)
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where gAB = diag(−1,−1,+1, · · · , 1), work out the commutation relations of “canon-
ical generators” Lµν , Pµ, Kµ, D.

II Exercise 2.15: If we denote the d dimensional spacetime coordinates by xµ, we
now that Pµ = −i∂µ and Lµν = ixµ∂ν − ixν∂µ. Work out realizations of D and Kµ

generators on the Minkowski space.

NOTE: For Euclidean d dimensional space the conformal group is SO(d+ 1, 1).

2.2 Conformal algebra in 2d

• Conformal Killing equation for d = 2 is

∂µξν + ∂νξµ = ∂αξ
αηµν , ∂2ξµ = 0 ⇒ ξ+ = ξ(t+ x) or ξ− = ξ(t− x) . (2.10)

For Euclidean version we have a similar expression:

z = x+ iy , z̄ = x− iy , ξ = ξ(z) , ξ̄ = ξ̄(z̄) . (2.11)

II Exercise 2.16: Show that ∂µξν + ∂νξµ = ∂αξ
αηµν leads to ∂2ξµ = 0 with no extra

conditions.

NOTE: in the Euclidean case ds2 = 2dzdz̄ and under z → f(z) (ALL meromorphic
transformations) ds2 = 2|∂f |2dzdz̄.

NOTE: In our 2d analysis we usually treat z and z̄ as two INDEPENDENT complex
coordinates and at the end of computations take z̄ to be complex conjugate of z, z∗.

NOTE: Having boundary conditions on the fields/functions will generically relate holo-
morphic and anti-holomorphic parts.

• Therefore, d = 2 it is infinite dimensional, while in d > 2 the conformal group is finite
dimensional.

• In 2d the conformal group is infinite dimensional as its generators are all meromorphic
diffeomorphism w = w(z).

NOTE: Here we discuss the Euclidean case, but the Minkowski case goes through
almost in the same way. Using complex coordinates z, z̄ is naturally associated with
the light-cone coordinates in the Minkowski case.

• Any such diffeomorphism admits a Laurent expansion

ds2 = 2dwdw̄ = 2|f(z)|2dzdz̄ , f(z) = ∂zw , w =
∑
n∈Z

ξnz
n . (2.12)
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• Associated with each zn there is a generator,

ξn = −zn+1∂z, ξ̄n = −z̄n+1∂z̄ . (2.13)

• The conformal algebra, as before, is nothing but the Lie bracket of the diffeomorphisms
generating it:

[ξn, ξm] = (n−m)ξm+n , [ξ̄n, ξ̄m] = (n−m)ξ̄m+n n,m ∈ Z.

One may then use a more formal notation by denoting the generators by Ln:

[Ln, Lm] = (n−m)Lm+n , [L̄n, L̄m] = (n−m)L̄m+n , [Ln, L̄m] = 0 , n,m ∈ Z.
(2.14)

• The above algebra is called the “Witt algebra”.

NOTE: Then ξn is a specific representation of the above algebra in coordinate basis.
Conformal algebra may have other representations and/or some “internal” parts.

II Exercise 2.17: Show that the Witt algebra is a Lie algebra.

• Although in 2d the conformal group is infinite dimensional one can still construct
conformal invariant cross-ratios.

• In fact holomorphic and anti-holomorphic parts each has its own cross-ratios.

II Exercise 2.18: Write out all conformal invariant cross-ratios for four and five
points (zi, z̄i) , i = 1, 2, 3, 4 or 5.

NOTE: As we see the 2d conformal algebra has two copies, the left and right moving,
Witt algebras.

• L0, L±1 generators of the Witt algebra form a subalgebra, because:

[L0, L±] = ∓L± , [L+, L−] = 2L0 .

The above is nothing but so(2, 1) or equivalently (its double cover) sl(2, R).

• The (1+1)d conformal algebra has hence a sl(2, R)L × sl(2, R)R ≃ so(2, 2) subgroup.

• The global 2d (Euclidean) conformal algebra is so(3, 1) ≃ sl(2,C)/Z2. These trans-
formation are generated by

f(z) =
az + b

cz + d
, ad− bc = 1 , a, b, c, d ∈ C , (2.15)

moding out the cases where all a, b, c, d change sign.
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II Exercise 2.19: Show that two successive transformations as above indeed form a
group produced by matrix multiplication of 2× 2 matrix made out of a, b, c, d.

II Exercise 2.20: As discussed 2d conformal transformations are generated by all
meromorphic diffeomorphism . These are not generically invertible if extended to the
whole 2d complex plane (to be more precise, the whole 2d plane + the point at infin-
ity). Show that the sl(2,C)/Z2 transformations (2.15) are the only globally invertible
holomorphic map among conformal transformations. Therefore, the sl(2,C)/Z2 is
also called global 2d conformal transformations.

• Generators of the Witt algebra in the coordinate basis are L+ = z2∂z, L0 = z∂z, L− =
∂z.

II Exercise 2.21: Write the generators of 2d Poincaré and dilatations in terms of
sl(2, R) generators.

II Exercise 2.22: Show that given n points with coordinates (z1, z2, · · · , zn), using
the SL(2, C) transformations, can be brought to (0, 1,∞, w4, · · · , wn).
Write explicitly the SL(2, C) transformations which does this.

II Exercise 2.23: Using the above write all the four and five point cross-ratios.

II Exercise 2.24: Gain intuition about conformal transformations z → zn: Use the
2d polar coordinates to study how the conformal map changes the shapes.

II Exercise 2.25: What are the scaling and special conformal transformations. Rep-
resent them as w = w(z).

NOTE: Think what is the difference between 1+1 and 2d conformal algebras.
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3 Conformal group as symmetry of QFT’s

• A generic Rel.QFT consists of fields in Irreps of Poincaré which are interacting with
each other. These interactions are in general given by the local Lorentz invariant opt’s
of the theory.

• If we consider free massless fields the action is invariant under rigid scaling x → λx,
IFF we assign appropriate scaling dimensions to the fields. For example, scalar fields
in d dimensions have scaling dimension (d − 2)/2, spinors (d − 1)/2 and gauge fields
with standard (canonical) kinetic term (d− 2)/2.

• Then, a generic physical observable (local opt) of the theory O will have a definite
scaling dimension, ∆O.

• If this operator is used to perturb/deform the theory the corresponding coupling will
have dimension d−∆O; according to standard QFT terminology if this value is positive,
zero or negative the operator is respectively called relevant, marginal and irrelevant
opt.

• Invariance under rigid scaling is lost if we have a dimensionful coupling in the theory.

II Exercise 3.1: Show the above explicitly.

• Absence of dimensionful couplings does NOT imply scale invariance of the quan-
tum theory because, couplings of QFT’s generically have RG flow, running (with
energy/scale). Therefore, even for marginal deformations coupling at different en-
ergies/scales will be different.

• According to standard Wilsonian picture, a QFT is defined around its RG fixed
point. At the fixed point, just by definition, QFT is scale invariant. Perturbations
around the fixed point may, however, not respect this symmetry.

• Therefore, the scaling symmetry is relevant to the study of QFT’s.

NOTE: Scale invariance does not mean conformal invariance.

• In what follows we would like to study

– the restrictions scale/conformal invariance imposes on QFT to start with.

– when is the scale/confromal symmetries exact (non-anomalous).

– Starting from a conformal invariant fixed point, what this symmetry implies for
physical observables (correlators) of the theory.
NOTE: This is essentially related to question of deformations/perturbations around
the conformal fixed point.

• As discussed 2d is special in some different ways:

– scalar and gauge fields are dimensionless and hence we have more freedom in
constructing CFT’s.

12



– The conformal algebra is infinite dimensional and hence more restrictive.

NOTE: Therefore, 2d CFT is the most developed and studied among the CFT’s. As before,
we need to discuss CFT’s in various dimensions, and in particular 2d separately. However,
before that let us review some basic facts about symmetries in QFT’s.

3.1 Remarks on quantization, radial quantization

• There are some different ways to “quantize” a given field theory, including canonical
quantization or path integral method.

• In the canonical method, we deal with operators and states and the time evolution of
the system is given by the Hamiltonian, which is generator of time translations:

|Φ(t)⟩ = U(t)|Φin⟩ , U(t) = eiHt , (3.1)

NOTE: In a field theory Hamiltonian is the generator of translation between constant
time (spatial) slices.

• We usually use perturbation theory and assume that |Φin⟩ is an approximate eigenstate
of the “free” Hamiltonian.

• For a CFT, however, as discussed states/operators are labeled by eigenvalues of the
Dilation operator D. It is hence, useful to quantize the theory in a way that uses this
fact.

• This is achieved in the so-called radial quantization.

• Consider a Euclidean d dimensional space:

ds2 = dx20 +
d−1∑
i=1

dx2i = dr2 + r2dΩ2
d−1

= e2ρ(dρ2 +R2dΩ2
d−1) , r = Reρ . (3.2)

That is, Rd is conformal to R× Sd−1.

II Exercise 3.2: Show that translation in radial direction ρ corresponds to scaling
in xµ coordinates.

• Therefore, a CFT on Rd is equivalent to a similar theory on d dimensional cylinder
Cd = R× Sd−1. This similar theory will have a conformal mass term.

II Exercise 3.3: If we start with a scalar field theory on Rd with action

S = −
∫
Rd

ddx

[
1

2
∂µϕa∂

µϕa + V (ϕa)

]
, (3.3)
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Then, show that under the conformal map to Cd the action becomes

S = −
∫
Cd

ddx

[
1

2
∇µϕa∇µϕa +

1

6
Rϕ2

a + V (ϕa)

]
, (3.4)

where 1
6
Rϕ2

a is called the conformal mass term and R is the Ricci scalar curvature of
Cd.
Note that for d = 2 C2 = R × S1 the space is flat while for d > 2 Cd is not flat and
when moving from Rd to Cd for d > 2 we need to add the conformal mass term.

• One may use the ρ direction as the “time” to define the evolution. That is, R direction
on Cd (the axis of the cylinder) would play the role of “time”. This is called radial
quantization of the field theory on Rd.

• The above mapping (3.2) was given for the Euclidean spaces. One may repeat similar
mapping in the Minkowski case, with the following procedure:

Wick rotate from Rd−1,1 to Rd, then do the conformal mapping to Rρ × Sd−1 and
Wick rotate back along Rρ by replacing τ = iρ.

• The evolution operator in the radial quantization is hence:

|Φ(ρ)⟩ = U(ρ)|Φin⟩ , U(ρ) = eiρD , (3.5)

NOTE: In this case, the origin r = 0 corresponds to ρ = −∞ where the |Φin⟩ state is
defined.

• Noting that Hamiltonian of radial quantizationD is hermitian, the question of unitarity
of the theory hence reduces to the question of unitarity or “unitarizability” of the
representations of the |Φin⟩ states.

• Next, note that |Φin⟩ is defined at the origin xµ = 0 and this makes a direct connection
with what we discussed earlier in the previous section, that to construct representations
of conformal group we may only focus on the internal parts of conformal generators
defined at x = 0.

• In the canonical quantization method, we assume the vacuum state |0⟩ to be invariant
under all conformal group transformations:

G|0⟩ = 0 , ∀G ∈ conformal algebra .

• As always we have the standard operator-state correspondence, between local operators
and states:

|O⟩ ←→ O|0⟩ .

• Recalling the operator state correspondence hereafter we use |O⟩ instead of O(0).

• One may also use the standard path integral method which is somewhat “more covari-
ant” than the canonical method. We will mainly consider that.

As argued we need to study representations of the conformal group and in particular its
unitary reps, much like Poincaré reps in the standard QFT. That is what we do next.
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3.2 Representations of the conformal group, in d > 2

• Having an indefinite metric, the irreps of conformal group, like the Lorentz or Poincaré
are infinite dimensional. That is we are dealing with “field theories”.

• Noting that ISO(d−1, 1) ∈ SO(d, 2), representations of conformal group may hence be
constructed based upon the irreps of Poincaré group in the same spacetime dimension.

• On the other hand, note also that SO(d− 1, 1)× SO(1, 1)D is a maximal subgroup of
the conformal group. All reps of the conformal group may hence be labeled by their
Lorentz rep and their scaling dimension (eigenvalues of dilatation operator).

• Note that generators of momentum Pµ as well as P 2, do not commute with dilatation
operator D, while generators of Lorentz and in particular rotations do commute with
D. So,

• States of non-zero mass cannot have definite scaling dimension (eigenvalues of D).

• Reps of conformal group with non-zero mass should hence involve an infinite number
of states with a continuum mass spectrum. This is not accounted for in a (standard)
particle based QFT. This has been explored in the last six-seven years under the title
of “unparticle physics” [H. Georgi, Phys.Rev.Lett. 98 (2007) 221601.]

• In general, hence, states in the irreps of conformal group are labeled by their spin and
scaling dimension and have zero mass (eigenvalue of P 2).

• As discussed irreps of conformal group consists of massless irreps of Poincaré algebra
which are the standard fields (functions):

Φ(x)→ Φ′(x′) = (1 + iω(x))Φ(x) , x→ x′ .

where ω(x) is a generic element of the conformal algebra.

• To find what are solutions to the above equation, i.e. the reps of conformal group, let’s
recall the construction of Poincaré group reps:

– Among Poincaré transformations there are those which transform the origin xµ =
0 (like translations Pµ), and those which do not transform the origin, the Lorentz
generators.

– The Lorentz generators Jµν have an external part Lµν = i(xµ∂ν − xν∂µ), which is
ZERO at the origin, and an internal part Sµν .

– The representations from for any arbitrary x can then be obtained from that of
x = 0 by conjugation with the translation operators.

– The internal part generators commute with ALL external Poincaré generators:

[Sµν , Pµ] = 0 , [Sαβ, Lµν ] = 0 , (3.6)

while
[Sµν , Sαβ] = i(Sµαηνβ + Sνβηµα − Sναηµβ − Sµβηνα) . (3.7)
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– One may then focus on the “internal” part first, whose irreps are labeled by spin.

– Explicitly, for Poincaré irreps:

PµΦ(x) = −i∂µΦ(x) , JµνΦ(x) = LµνΦ(x) + SµνΦ(x) .

– Reps of the external parts are infinite dimensional while the internal parts are
finite dimensional.

II Exercise 3.4: Can we also associate an internal part of momentum Pµ?!

– One can always use translations to map any operator or other generator of confor-
mal group to the origin xµ = 0. One can then only need to focus on the “internal”
part of the algebra generators. In particular, for Jµν

∣∣
x=0

= Sµν .

• For the conformal group, adding D and Kµ we may proceed in the same way:

– D has an external part which is −ixµ∂µ and an internal part denoted by ∆.

– Kµ has an external part which is −i(2xµxν∂ν−x2∂µ) and an internal part denoted
by κµ.

• As in the Poincaré part, the external parts vanish at the origin.

• The internal parts ∆ and κµ, just like spin, are (finite dimensional) matrices.

II Exercise 3.5: What is the subgroup of the the conformal group which keeps the
origin invariant?

• The internal conformal algebra is hence

[∆, Sµν ] = 0 , [∆, κµ] = −iκµ , (3.8)

[κµ, κν ] = 0 , [Sµν , κα] = −i(ηµακν − ηνακµ) (3.9)

• Returning to reps:

DΦ(x) = (−ixµ∂µ +∆)Φ(x) , (3.10)

KµΦ(x) =
[
−i(2xµxν∂ν − x2∂µ) + 2xµ∆− Sµνx

ν + κµ
]
Φ(x) . (3.11)

NOTE: In the above D and Kµ are assumed to be operators acting on the field space,
of course as well as their action on the spacetime. This is a common practice of finding
representations of external (spacetime) symmetries, e.g. Poincaré on the fields. If Φ
is a quantum field in the canonical quantization, then D or Kµ are operators acting on
the field operators; explicitly, in this language, e.g. DΦ means [D,Φ].

II Exercise 3.6: Show the above.
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• IF we demand Φ(x) to be in an irrep of Lorentz group (i.e. to have a definite spin),
then (3.8) implies it can have a definite ∆ too. (∆ is identity matrix for this irrep).

NOTE: Remember that ∆ is generator of SO(1, 1) and is not Hermitian. However,
−i∆ is Hermitian.

NOTE: The eigenvalue of −i∆ is called the scaling dimension.

• (3.9) and (3.8) imply that states of definite spin and scaling dimension cannot be
eigenstates of κµ, unless they have vanishing κµ. Hereafter, we will hence set κµ = 0.

• For a scalar field ϕ(x) with scaling dimension ∆, under conformal transformations (2.4)

xµ → x′µ , ηµν → λ(x)2ηµν ,

ϕ(x)→ ϕ′(x′) = λ(x)∆ϕ(x) . (3.12)

That is, if we consider only the rigid scalings x → λx (corresponding to λ(x) = λ−1),
then

ϕ′(λx) = λ−∆ϕ(x) . (3.13)

• Note that conformal transformations consists of an overlap of diffeomorphism and
Weyl scaling. Therefore, as e.g. seen in (3.12), ϕ(x) behaves as an scalar under the
diffeomorphism and the λ(x)∆ indicates the representation under Weyl scaling.

II Exercise 3.7: Show (3.13) and work out δϕ under scaling.

• A basic field with given ∆ like above, is called quasi-primary .

• More explicitly, a quasi-primary field/operator O(x) is defined by the condition

KµO|x=0 = 0. (3.14)

That is, quasi-primary fields are killed by the special conformal generators Kµ.

• An operator which is not killed by Kµ while it has a definite scaling dimension
is called a descendent operator.

NOTE: In the existing literature and for d > 2 cases, may also be called primary.
In 2d case, as we will see, there is a distinction between primary and quasi-primary.

II Exercise 3.8: Repeat the above for vector and tensor fields.
HINT: For a quasi-primary field of generic spin (3.12) should be replaced with

Φ(x)→ Φ′(x′) = λ(x)∆ R[Φ] . (3.15)

where R is associated with the representation of Lorentz group associated with Φ. For
example for the case of vector field: V ′

µ(x
′) = λ(x)∆ R ν

µ Vν(x). Here R ν
µ includes both

Lorentz and special conformal transformations.
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NOTE: As discussed the conformal group is a very specific subgroup of Diff ×Weyl
(2.4). The prefactor λ(x)∆ in the above is basically indicating the representation of the Weyl
scaling and being scalar, spinor, vector and ... determine the representation under diffeo-
morphism .

II Exercise 3.9: Let O(x) be a local quasi-primary operator of dimension ∆ and spin
s, what is the dimension and spin of operators PµO(0) and KµO(0). What about PµPνO(0)
and KµKνO(0). Answer the same question when O is not a quasi-primary operator.

3.3 Norm and Unitarity of representations in radial quantization

• As in the standard quantization, the “quasi-primary” states are simultaneously diago-
nalize D and Lorentz generators Jµν :

iD|∆, s⟩ = ∆|∆, s⟩ , S2|∆, s⟩ = s(s+ d− 3)|∆, s⟩ . (3.16)

NOTE: The second relation above is written for integer s tensorial representation of
SO(d).

• A unitary QFT is a theory with positive definite norm on its Hilbert space, i.e.

⟨Φ|Φ⟩ ≥ 0 , ∀|Φ⟩ , and ⟨Φ(t)|Φ(t)⟩ ≥ 0 . (3.17)

• In order the dynamics to preserve the norm, the Hamiltonian should be Hermitian and
bounded from below, i.e. to have a positive definite spectrum.

• One may ask similar question about radial quantization and the spectrum of dilation
operator:

What is the condition for unitarity in the radial quantization?

• Let us focus on the Euclidean case, where the conformal group is SO(d+ 1, 1). Then,
recalling that

Pµ = L−1,µ + Ld+1,µ , Kµ = −L−1,µ + Ld+1,µ , D ≡ iL−1,d+1 , (3.18)

and that
L†

−1,µ = −L−1,µ , L†
d+1,µ = Ld+1,µ ,

we learn that
(Pµ|Φ⟩)† = ⟨Φ|Kµ , (Kµ|Φ⟩)† = ⟨Φ|Pµ . (3.19)

• Next we recall that

[Kµ, Kν ] = 0 , [Pµ, Pν ] = 0 , (3.20)

[Kµ, D] = +Kµ , [Pµ, D] = −Pµ , (3.21)

[D,Lµν ] = 0 , [Pµ, Kν ] = 2(Dηµν + iLµν) . (3.22)
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II Exercise 3.10: Compute the second rank Casimir of the conformal group L2 ≡
LABL

AB. Compute L2|x=0O(0) where O is a quasi-primary field of spin s and dimen-
sion ∆.

• The states/operators are labeled by eigenvalues of iD, the scaling dimension denoted
by ∆ and the representations of the SO(d) Lorentz group (whose generators are Lµν).
The latter is nothing but the spin representation of SO(d). Explicitly, a generic state
is |∆, {si}⟩ , i = 1, · · · , [d/2]:

iD|∆, {si}⟩ = ∆|∆, {si}⟩ . (3.23)

• A given SO(d) spin state itself, can be represented by the highest weight states hi , i =
1, · · · , [d/2].

• In this notation, Pµ raises the scaling dimension and Kµ lowers it:

iD(Pµ|∆, {si}⟩) = (∆+1)(Pµ|∆, {si}⟩) , iD(Kµ|∆, {si}⟩) = (∆−1)(Kµ|∆, {si}⟩) .
(3.24)

II Exercise 3.11: Show the above using (3.20).

• Conformal primaries denoted by |∆0, {si}⟩, as defined before, are the states which are
killed by Kµ:

Kµ|∆0, {si}⟩ = 0 , (3.25)

• Given any primary operator/state, one can construct a conformal multiplet/representation,
based on this state by acting with all conformal generators on the primary state. These
other states are descendents of the primary.

II Exercise 3.12: If a primary has scaling dimension ∆0, show that the correspond-
ing descendents have scaling dimension ∆0 + n , n ∈ N.

• The primaries are hence states with lowest scaling dimension in a given conformal
multiplet.

• The conformal multiplets are generically infinite dimensional, because one can consider
descendents of the form Pµ1Pµ2 · · ·Pµn |∆0, {si}⟩ for arbitrarily large n.

3.3.1 Unitary bounds

• We can now invoke the unitarity conditions (3.17) on a primary state or its descendents
and read off the condition on ∆0. Depending on which level of descendents we consider
we will obtain various inequalities, e.g. up to level two

⟨∆0, {si}|∆0, {si}⟩ ≥ 0 , (3.26)

||ζ · P |∆0, {si}⟩||2 ≥ 0 , (3.27)

||ξ · P ζ · P |∆0, {si}⟩||2 ≥ 0 , (3.28)

where ζ, ξ are two arbitrary vectors.
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• Let us explore the level one condition. Using P †
µ = Kµ and the [Pµ, Kν ] commutation

in (3.20) and that |∆0, {si}⟩ is a primary state we learn that

ζ∗µζν⟨∆0, {si}|(∆0ηµν − iLµν)|∆0, {si}⟩ ≥ 0 , (3.29)

for any given ζµ.

• iLµν is an operator which has SO(d) vector indices, as well as acting on SO(d) spin
state |{si}⟩. Therefore, it is a product of L = 1 and L = S SO(d) generators, explicitly:

iLµν = V ab
µνSab , V ab

µν = i(δaµδ
b
ν − δaνδbµ) ,

≡ L · S

=
1

2
(−L2 − S2 + (L+ S)2) .

(3.30)

where a, b = 1, · · · d.

• Given a spin state S, we hence need to decompose 1
⊗

S and compute (L + S)2 for
this state.

• The BIGGEST eigenvalue of this decompose spin states, denoted by ℓs, will determine
the bound on ∆0:

∆0 ≥ ℓs . (3.31)

• The rest is just a group and representation theory of SO(d) to arrive at the largest
value of ℓs and obtain the bound. Here we just summarize the result. The details may
be found in hep-th/9712074 and references therein.

• One can show that the above “level 1” analysis yields the unitarity bound on non-
scalar states. For scalar (spin zero) states the level 1 analysis gives ∆0 ≥ 0. One may
then consider the “level 2” analysis for scalars to find

∆0(∆0 −
d− 2

2
) ≥ 0 .

For non-scalar states level 2 or higher analysis does not yield any new condition.

II Exercise 3.13: Work out the above.

• Summary of the unitarity bounds in dimension d:

Scalar : ∆0 ≥
d− 2

2
, (3.32)

Spin 1/2 : ∆0 ≥
d− 1

2
, (3.33)

Vector : ∆0 ≥ d− 1 , (3.34)

Antisymmetric Fµν: ∆0 ≥ d/2 . (3.35)

The last item in the above corresponds to the field strength of a vector gauge field.

II Exercise 3.14: Work out the details of the analysis leading to the above bounds.
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II Exercise 3.15: If we denote the vector state saturating the unitarity bound by
|Jµ⟩, show that Pµ|Jµ⟩ = 0. This establishes the fact that conformal “primary cur-
rents” are conserved and will couple to gauge fields.

II Exercise 3.16: Show that FREE fields in any dimension saturate the above
bounds.

NOTE: Note that our group theory analysis is smart enough to distinguish the fact
that the “vector” field by itself is not a physical state and we need to consider gauge
invariant combinations like field strength. That is, the physical vectors does not corre-
spond to gauge fields Aµ, but to their currents.

II Exercise 3.17: As argued earlier states of given scaling dimension cannot be
eigenstate of P 2, unless we are dealing with massless states, P 2|∆0, {si}⟩ = 0. Con-
vince yourself that this statement is true for quasi-primaries or descendents alike. (Note
however that only for free fields P 2 is the “mass”.

II Exercise 3.18: Given the above exercise, convince yourself that we may always
deal with representations of the Lorentz little group associated with “massless” states,
SO(d− 2).

NOTE: The above unitarity bounds (3.32) is nothing but the BF bound for mass of
states on an AdSd+1 background. This is necessitated by the AdS/CFT; to come later....

• Unitarity Bounds in the 2d case: In the 2d case the states are labeled by SL(2, R)×
SL(2, R) representations, which in turn are labeled by eigenvalues of L0 and L̄0.

II Exercise 3.19: If we denote the eigenvalues of L0 and L̄0 by h and h̄, respectively,
show that the unitarity bound is

h ≥ 0 , h̄ ≥ 0 .

where in terms of so(2, 2) or so(3, 1) quantum numbers, scaling dimension ∆ and spin
S, these are

∆ = h+ h̄ , S = h− h̄ .

• We will return to 2d conformal algebra representations later on when we introduce the
notion of central charge and Virasoro algebra. The central charge is not a geometrical
notion and is a characteristic of the CFT in question.

3.4 Classical Noether currents for conformal symmetry

• Continuous global symmetries,

ϕ(x)→ ϕ′(x′) = Φ(ϕ(x)) , x→ x′ , S[ϕ] =

∫
ddxL(ϕ, ∂ϕ, · · · ;x) = S[ϕ′] ,

(3.36)
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lead to conserved Noether currents.

• To compute the Noether current consider infinitesimal transformations

x′µ = xµ + ϵa
δxµ

δϵa
, ϕ′(x′) = ϕ(x) + ϵa

δΦ

δϵa
. (3.37)

II Exercise 3.20: Compute δϕ ≡ ϕ′(x)− ϕ(x).

• Invariance of action then leads to ∂µJ
µ
a = 0, where

Jµ
a =

(
∂L

∂(∂µϕ)
∂νϕ− δµνL

)
δxν

δϵa
− ∂L

∂(∂µϕ)

δΦ

δϵa
. (3.38)

II Exercise 3.21: Work out the above.

• Given a conserved current one can define conserved charges Qa

Qa =

∫
dd−1xJ0

a . (3.39)

NOTE: One may define the conserved current up to the divergence of a two-form.

• Conserved currents for conformal group in d > 2:

II Exercise 3.22: For a CFT with primary fields ϕi:

I. Work out the Noether current for space-time translations, the energy-momentum
tensor Tµν .

II. Show that the Noether current for Lorentz transformations

Lαµν = Tαµxν − Tανxµ , (3.40)

if Tµν is symmetric. Note that the angular momentum, may have an internal spin
part Sαµν and the “total angular momentum” should be conserved.

III. Show that the conserved Noether current of rigid scaling is

Jµ = Tµνx
ν , (3.41)

where Tµν is the energy momentum tensor and defined as

Tµν = − 2
√
g

δS

δgµν
.
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Show that conservation of Jµ (i.e. scale invariance) implies T µ
µ = 0, i.e. traceless-

ness of energy momentum tensor.
Argue whether in the above result we should have considered the “internal” part for the
rigid scaling (the scaling dimension ∆ we discussed earlier).

IV. Show that the Noether current of special conformal transformations is

Kµν = Tµα(2xαxν − x2δαν) . (3.42)

V. Show that Kµν is conserved if energy momentum conservation, Lorentz and scaling
invariance holds.
HINT: For the above exercises note the definition of the conformal transformation
(2.4) and recall that Tµν ≡ − 2√

g
δS
δgµν

. Then, note that since we are dealing with a

diffeomorphism, the conserved Noether current and charge for the conformal transfor-
mations is

Jµ
conformal = T µνξν , Qξ =

∫
d3x T 0νξν , (3.43)

where for our case ξν is given in (2.8).

NOTE: As implied by V. part of the above exercise, it seems that, at least at classical
level and when we ignore the internal parts of conformal generators (like spin and ∆),
Poincaré and scaling invariance is enough for full conformal invariance. Whether this
result continues to be true when we consider the internal parts and quantum effects has
prompted many researches and studies in the literature. We will briefly discuss this
later.

3.5 Ward identities for conformal symmetry

• The notion of symmetry, Noether current and charge defined above are classical. One
may wonder if they remain at quantum level.

• There are some different and somewhat complementary ways to explore the above
question, e.g.

I. noting that all quantum effects are encoded in the (Wilsonian) effective action, the
question of anomaly reduces to the invariance of effective action under the symmetry
transformations (or perhaps a quantum corrected transformation).

II. OR, recall that when a transformation (3.37) is a symmetry of a theory, all n-point
functions should be invariant under that transformation

⟨O1(x
′
1)O2(x

′
2) · · ·On(x

′
n)⟩ = ⟨Õ1(x1)Õ2(x2) · · · Õn(xn)⟩ , (3.44)

where
Oi(x

′) = Oi[ϕ(x
′)] , Õi(x) ≡ Oi[Φ(ϕ(x))] , (3.45)
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and Φ(ϕ) is defined in (3.36). Note that operatorial form of Oi are not necessarily the
same.

II Exercise 3.23: Show (3.44).
HINT: To show the above note that in the path integral we are integrating over ALL
field configurations and ϕ is the dummy variable inside path integral. What assump-
tion about the path integral measure should be made?!

One may expand (3.44), recalling that

S[ϕ′] = S[ϕ] +

∫
ddx∂µJ

µ
a ϵa(x) , Dϕ = Dϕ′ . (3.46)

NOTE: As in the Noether theorem we are assuming ϵa = ϵa(x) and will relax it later.

NOTE: The second equation above is an assumption.

The RHS of (3.44) may now be expanded for infinitesimal symmetry generating trans-
formations to obtain:

ϵa(x)⟨δa(
∏

O)⟩ =
∫
ddx ∂µ⟨Jµ

a (x)O1O2 · · ·On⟩ϵa(x) , (3.47)

where

ϵa(x)δa(
∏

O) ≡ O1[ϕ
′(x1)]O2[ϕ

′(x2)] · · ·On[ϕ
′(xn)]− O1[ϕ(x1)]O2[ϕ(x2)] · · ·On[ϕ(xn)].

OR

δa(
∏

O) =
n∑

i=1

O1(x1)O2(x2) · · ·
(
δOi

δϕ
δaϕ

) ∣∣∣
x=xi

· · ·On(xn). (3.48)

NOTE: Eq.(3.47) should be true for all ϵa(x). And hence one may drop ϵa from both
sides and formally obtain:

⟨δa(
∏

O)⟩ = ∂µ⟨Jµ
a (x)O1O2 · · ·On⟩ , (3.49)

II Exercise 3.24: Work out and simplify (3.47) for free field theory and when
Oi = ϕ(xi) and for linear global transformations.

II Exercise 3.25: Integrate both sides of the above equation over x coordinate and
simplify the equation. This equation may also be called Ward identity.

III. OR, one may directly explore whether the conservation of Noether current ∂µJ
µ
a = 0

holds IF Jµ is viewed as a quantum operator. This operator equation holds IF

⟨∂µJµ
a (x)X(x1, x2, · · · , xn)⟩ = ∂µ⟨Jµ

a (x)X(x1, x2, · · · , xn)⟩ =
?

0 ∀X , xi ̸= x . (3.50)

NOTE: It is important to remember that x ̸= xi, otherwise the above is not strictly
true. This is to avoid operator ordering issues in the local QFT’s.
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II Exercise 3.26: Show that (3.50) and (3.44) are basically equivalent.

The above is the Ward identity in a compact and general form.

II Exercise 3.27: Work out the above Ward identity for a free field theory and for
X = ϕ(x1)ϕ(x2) · · ·ϕ(xn) and when for linear transformations δϕ = ϵaGaϕ.

3.5.1 Ward identities for conformal group in d > 2

• The above arguments was for a general symmetry, we may now restrict our attention
to the conformal group. We hence start with the currents worked out in exercise
3.22 and consider translations, Lorentz transformation, dilation and special conformal
transformations separately.

II Exercise 3.28: Ward identity for energy-momentum conservation:
Work out and simplify the Ward identity (3.49) and/or (3.50) for the energy-momentum
tensor which is the conserved current for spacetime translations. Note that for this case
δO = −ϵµ∂µO.
Answer:

∂µ⟨T µν(x)O1(x1)O2(x2) · · ·On(xn)⟩ = −
n∑

i=1

δ(x− xi)
∂

∂xνi
⟨O1(x1)O2(x2) · · ·On(xn)⟩ .

(3.51)

II Exercise 3.29: Suppose that we have a QFT with partition function Z and
generating functional W:

Z[g] =

∫
[Dϕ]g e

−S[ϕ;g] , W = − lnZ ,

where g is the background metric which is treated as a “classical” field. Show that

⟨T µν⟩ = − 2
√
g

δW[g]

δgµν
. (3.52)

Discuss on metric dependence of the measure [Dϕ]g.

II Exercise 3.30: Ward Identity for angular momentum conservation:
If

δO = −ϵµν [(xµ∂ν − xν∂µ) + Sµν ]O

then work out the angular momentum ward identity

⟨T [µν](x)O1(x1)O2(x2) · · ·On(xn)⟩ = −
n∑

i=1

δ(x− xi)Sµν
i ⟨O1(x1)O2(x2) · · ·On(xn)⟩ ,

(3.53)
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where Sµν
i is the spin of operator Oi and T

[µν] = T µν − T νµ is the antisymmetric part
of T .

II Exercise 3.31: Ward Identity for rigid scaling (dilation) symmetry:
For operators of given scaling dimension:

δOi = −(xµ∂µ +∆i)Oi ,

show that the Ward identity becomes

⟨T µ
µ (x)O1(x1)O2(x2) · · ·On(xn)⟩ = −

n∑
i=1

δ(x−xi)∆i⟨O1(x1)O2(x2) · · ·On(xn)⟩ , (3.54)

where in the above (3.51) has been used.

NOTE: The scale invariance, like other continuous symmetries, may be anomalous.
One way to check this is to compute ene.mom. tensor using effective action. We will
return to scaling anomaly, usually called “trace anomaly” later.

NOTE: If (3.54) is not satisfied for all Oi then scaling symmetry is anomalous; we
have trace anomaly.

II Exercise 3.32: Work out the Ward identity for special conformal transforma-
tions. Does it reduce to scaling and Poincaré invariance Ward identities?

NOTE: The answer to the above together with (3.51) and (3.54) provide Ward iden-
tities for the conformal symmetry.

• One may try to repeat the above in the canonical language and in terms of operators,
rather than path integral. In this case the Noether charge Qa turns to an operator
defined on the QFT Hilbert space. The field transformation in this case can be written
as

δaΦ =
δΦ′(x′)

δϵa
= i[Qa,Φ] . (3.55)

II Exercise 3.33: Show the above.

3.6 Conformal invariance and QFT correlation functions, d > 2

• Let us suppose that we have a conformally invariant theory and Oi be its quasi-primary
operators of scaling dimension ∆i.

II Exercise 3.34: Show that ∂µOi is an operator with scaling dimension ∆i + 1,
while not necessarily a quasi-primary operator.
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• Under a general conformal transformations x→ x′ = x′(x),

Oi(x)→ O′
i(x

′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆i

Oi(x) . (3.56)

If operators O1 and O2 are Lorentz scalars, the translation invariance implies

⟨O1(x1)O2(x2)⟩ = f(|x1 − x2|) ,

where f is a scalar function.

II Exercise 3.35: Similar result also holds for non-scalar operators. Argue that
⟨O1O2⟩ is in general non-zero IFF O1 and O2 are in the same Lorentz Rep.
Work out the most general form of two point function when O are spinor or vector. For
a reference discussing this, e.g. see H. Osborn and A. C. Petkou, Annals Phys.

231, 311 (1994) [arXiv:hep-th/9307010].

Then invariance under rigid scaling implies that

⟨O1(λx1)O2(λx2)⟩ = λ−∆1+∆2⟨O1(x1)O2(x2)⟩

and hence

⟨O1(x1)O2(x2)⟩ =
C12

|x1 − x2|∆1+∆2
. (3.57)

Next, we use invariance under special conformal transformations:

⟨O1(x
′
1)O2(x

′
2)⟩ =

∣∣∣∣∂x′∂x

∣∣∣∣−∆1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣−∆2/d

x=x2

⟨O1(x1)O2(x2)⟩ (3.58)

where ∣∣∣∣∂x′∂x

∣∣∣∣ = 1

(1− 2b · x+ b2x2)d
.

Therefore,

⟨O1(x1)O2(x2)⟩ =


N12

|x1−x2|2∆1
∆1 = ∆2

0 ∆1 ̸= ∆2

(3.59)

NOTE: Scale invariance does not imply ∆1 = ∆2 in (3.57).

II Exercise 3.36: Complete the steps of the above computation.

NOTE: The above analysis is for the Euclidean theory. In the Lorentzian signature
(3.59) is rewritten as

⟨T (O1(x1)O2(x2))⟩ =


N12

|(x1−x2)2+iϵ|2∆1
∆1 = ∆2

0 ∆1 ̸= ∆2
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• Similarly one can work out the three point function:

⟨O1(x1)O2(x2)O3(x3)⟩ =
C123

|x1 − x2|c|x1 − x3|b|x2 − x3|a
,

where scale invariance implies a+ b+ c = ∆1 +∆2 +∆3.
Invariance under special conformal transformations leads to

b+ c = 2∆1, a+ c = 2∆2, a+ b = 2∆3.

II Exercise 3.37: Work out the above.

Finally, we obtain

⟨O1(x1)O2(x2)O3(x3)⟩ =
C123

|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1
.

(3.60)

• The spacetime dependence of higher point functions is not fixed by conformal invari-
ance, because we have conformal invariant cross-ratios.
For these cases the spacetime dependence is hence fixed to be functions of these cross-
ratios.

II Exercise 3.38: Show that the four point function is restricted to

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ = F (R1, R2)
4∏

i<j

|xi − xj|∆/3−∆i−∆j , (3.61)

where

R1 =
|x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

, R2 =
|x1 − x2||x3 − x4|
|x2 − x3||x1 − x4|

,

and ∆ =
∑4

i=1 ∆i.

3.6.1 Scale vs. conformal invariance

• One of the questions which has been asked but is still an open question in general, is
the relation between scale and conformal invariance in QFT’s.

• This question is interesting because QFTs at RG fixed points are scale invariant and
one would naturally like to know if they are also conformal invariant.

• As discussed earlier (cf. exercise 3.14) at classical level conservation of the Noether
conserved current associated with special conformal transformations follows from the
Poincaré and scale invariance. That is, classically scale+Poincaré invariance results in
conformal invariance.

II Exercise 3.39: Does Ward identity for special conformal transformations also
follow from the Ward identities of Poincaré +scaling, i.e. (3.51), (3.53) and (3.54)?
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• On the other hand, as discussed above spacetime dependence of correlation functions,
including 2pt or 3pt functions is fixed once we use full conformal invariance and not
just scaling.

• So one may wonder whether scale +Poincaré invariance implies conformal invariance.

• In the 2d case, we have the Zamolodchikov-Polchinski theorem proving that any 2d
QFT with properties

– Unitarity,

– Poincaré invariance (relativistic causality),

– discrete spectrum in scaling dimension,

– unbroken scale invariance,

is necessarily a CFT.

Ref: A. B. Zamolodchikov, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor.

Fiz. 43 (1986) 565].

J. Polchinski, Nucl. Phys. B 303, 226 (1988).

• In the context of 2d and 4d QFT’s it has been shown that [Y. Nakayama, arXiv:1302.0884]:

....As of January 2013, our consensus is that there is no known example of scale invari-
ant but non-conformal field theories in d=4 under the above mentioned five assump-
tions...

• One may relax either of the above four assumptions and try to construct examples of
scale and Poincaré invariant QFTs which are NOT CFTs.

• Such examples in 2d has been studied.

• 3d example: Wilson-Fisher fixed point and conformal invariance of 3d Ising?!
K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972);

S. Rychkov, arXiv:1111.2115 [hep-th].

• See for discussions and examples [arXiv:1302.0884] and for more recent develop-
ments [arXiv:1309.2921, arXiv:1309.4095, arXiv:1402.3208, arXiv:1402.6322,

arXiv:1402.7346 ].
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4 2d conformal symmetry and 2d CFTs

• So far we mainly discussed conformal group and its representations in d > 2 dimen-
sions. In the 2d case we have the peculiar feature that the conformal group is infinite
dimensional.

• The conformal group in 2d is generated by two copies of meromorphic coordinate
transformations and their generators satisfy two copies of the Witt algebra, one for
right movers and one for left movers.

• Witt algebra has an SL(2, R) subgroup, and hence 2d conformal group has SL(2, R)×
SL(2, R) ≃ SO(3, 1) subalgebra.

• Witt algebra admits a central extension. This centrally extended Witt algebra is called
Virasoro algebra:

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n . (4.1)

c is the central charge.

• The central charge c, unlike the Ln’s do not have a direct coordinate interpretation; it
is a property of the 2d CFT.

• A generic 2d CFT is hence invariant under two copies of Virasoro algebra. The asso-
ciated left and right central charges c and c̄ can be different.

NOTE: The central charge c does not appear in the SL(2, R) part of Virasoro gener-
ated by L0, L±.

II Exercise 4.1: Show under

Ln → Ln = Ln + xn , (4.2)

where xn are some commuting operators. The [Ln, xm] commutators such that the al-
gebra of Ln reduces to the Witt algebra.
Hint: Use the ansatz [Ln, xm] = Axm+n +Bδm+n and find A,B coefficients.

• We will return to the physical meaning of the central charge c in section 4.6.1.

4.1 Representations of the 2d conformal group

• Since in this case the group is infinite dimensional the story will be different and
representations are also infinite dimensional, in general.

• The states in the irreps of Witt algebra may be labeled by eigenvalues of L0 (which is
nothing but the scaling dimensions.).

II Exercise 4.2: Discuss why L0 is special.

II Exercise 4.3: Does Witt algebra admit second rank Casimirs?
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• As d > 2 case, one may define the notion of quasi-primary fields. In 2d, however, the
quasi-primary fields are labels by eigenvalues of L0 and L̄0, respectively the holomorphic
and anti-holomorphic (or equivalently left and right) conformal weights h, h̄:

ϕ(z, z̄)→ ϕ′(w, w̄) =

(
∂w

∂z

)−h(
∂w̄

∂z̄

)−h̄

ϕ(z, z̄) , z → w = w(z) , z̄ → w̄ = w̄(z̄) ,

(4.3)
where w(z) in the above denotes the SL(2, C) transformations.

NOTE: Under 2d rigid scaling the field has weight ∆ = h + h̄ and under rotation
eigenvalue (spin) S = h− h̄.

• Primary fields are a subset of quasi-primary fields which under any generic infinites-
imal meromorphic diffeomorphism

z → z + ξ(z) , z̄ → z̄ + ξ̄(z̄) ,

transform as

ϕ(z, z̄)→ ϕ′(z, z̄) = ϕ(z, z̄) + δϕ , δϕ = −(h∂ξ ϕ+ ξ∂ϕ)− (h̄∂̄ξ̄ ϕ+ ξ̄∂̄ϕ) . (4.4)

NOTE: The difference between primary and quasi-primary fields is that quasi-primary
is defined only under the SL(2, C) sector.

II Exercise 4.4: Given a primary field ϕ of conformal weights (h, h̄), what is the
conformal weights of ∂ϕ and ∂̄ϕ? What are their spin S and scaling dimension ∆?

II Exercise 4.5: Show that derivatives of primary field ϕ for generic h, h̄ are NOT
primaries. Are they quasi-primary? When these derivatives are primary?

• Given a primary state (lowest weight state) of a 2d primary |h, h̄⟩ multiplet is built by
acting Virasoro generators on |h, h̄⟩.

• Later on when we defined the conformal group as a symmetry of a QFT we will study
another representation for the conformal algebra, based on the primary states and their
(conformal) descendants.

4.1.1 Unitary representations of the Virasoro algebra

• In order to construct unitary reps we need to first construct a normalized vacuum
state |0⟩. This state must be killed by the “global” part of the conformal group
SL(2, C). This is the “invertible” part of the 2d conformal algebra, the Virasoro
algebra. Explicitly,

L0|0⟩ = 0 , L±|0⟩ = 0 , L̄0|0⟩ = 0 , L̄±|0⟩ = 0 . (4.5)
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• Next, we note that
L−n = L†

n , (4.6)

II Exercise 4.6: Show the above using the Virasoro algebra.
and hence L−n , n > 0 acts as a raising operator while Ln , n > 0 as lowering operator.
We therefore, demand

Ln|0⟩ = 0 n ≥ −1 . (4.7)

NOTE: Compared to the d > 2 case, Ln , n > 0 are all lowering operators like the Kµ.

• If we demand non-negative norm for all L−n|0⟩ states, we find

||L−n|0⟩||2 =
c

12
n(n2 − 1) ≥ 0 . (4.8)

• So, unitarity of the CFT requires

c ≥ 0 , c̄ ≥ 0 , (4.9)

and If c = 0 then ||L−n|0⟩|| = 0.

• Descendents of vacuum, the Verma module:

– L−n, n > 1 does not kill the vacuum. Therefore one can consider a tower of
states constructed from action of various combinations of Ln’s n ≤ −2 acting on
|0⟩. The descendents of vacuum are called Verma module. A generic state in the
Verma module is

|{ni}⟩ ≡
∏

i,ni≥2

L−ni
|0⟩ , ni ≥ nj, i ≤ j. (4.10)

II Exercise 4.7: Show that a generic state in the Verma module has scaling
dimension

∑
i ni.

– One can hence distinguish various “levels” in the Verma module based on the
scaling dimension of state; at level N =

∑
ni we have all descendents of vacuum

with scaling dimension N . II Exercise 4.8: Compute how many descendents
at level N are there.

II Exercise 4.9: Study orthogonality of states in the Verma module at a given
level N .

• After defining the vacuum state, we can construct the primary states. To this end, let
us recall the operator-state correspondence: a primary state is the state generated by
the action of a local primary operator of conformal weights (h, h̄) on the vacuum, i.e.

|h, h̄⟩ = O(z = 0)|0⟩.
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• Using the definition of a primary operator and its behavior under conformal transfor-
mation (4.4):

δO = −(h∂ξ O+ ξ∂O)− (h̄∂̄ξ̄ O+ ξ̄∂̄O) , (4.11)

and (2.13) and (3.55) we obtain

[Ln,O(z, z̄)] = h(n+ 1)znO(z, z̄) + zn+1∂O(z, z̄) ,

[L̄n,O(z, z̄)] = h̄(n+ 1)z̄nO(z, z̄) + z̄n+1∂̄O(z, z̄) ,
(4.12)

for n ≥ −1.
II Exercise 4.10: Show the above.

II Exercise 4.11: How should (4.12) be modified for the Quasi-Primary states?

• Finally we learn that:

L0|h, h̄⟩ = h|h, h̄⟩ , L̄0|h, h̄⟩ = h̄|h, h̄⟩ ,
Ln|h, h̄⟩ = 0 , L̄n|h, h̄⟩ = 0 , n > 0 .

(4.13)

The above defines the primary states.

II Exercise 4.12: In the same spirit as above, how should we define a quasi-primary
state?

NOTE: Once again Ln , n > 0 acts as the lowering operator and the primary is the
state which is killed by the lowering operators; it is the lowest weight states in its “fam-
ily”.

II Exercise 4.13: Show unitarity condition for any primary state |h, h̄⟩ is h , h̄ ≥ 0.

• Descendents of a primary:

– As pointed out above number of lowering and raising operators in the 2d con-
formal algebra is infinite. Therefore, there are many different ways to construct
descendents of a given primary state. As in the Verma module, the descendents
may be labeled by their conformal weights, e.g.

|{ni};h, h̄⟩ ≡
∏
i

L−ni
|h, h̄⟩ ,

∑
ni = N , (4.14)

has conformal weight N + h.

– All the states of the form (4.14) are level N states in the Verma module based on
|h, h̄⟩.

II Exercise 4.14: Compute how many descendents at level N are there.

II Exercise 4.15: Show that if two primary states are orthogonal to each other, all
the states in their Verma modules are also orthogonal:

⟨h′|h⟩ = 0 ⇒ ⟨{ki}, h′|{pi}, h⟩ = 0 . (4.15)
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4.2 Correlation functions in 2d CFTs

NOTE: Hereafter we will be only considering the Euclidian case.

II Exercise 4.16: Show that in this case, S = h− h̄ ∈ Z, while ∆ = h+ h̄ can be an
arbitrary positive real number.

• The above arguments may directly be extended to 2d CFTs. In 2d (quasi)primary
fields/operators are specified by their conformal weights (h, h̄).

• Suppose that we have primary fields/operators Oi = Oi(z, z̄) with weights (hi, h̄i), and
consider conformal transformations z → w = w(z) , z̄ → w̄ = w̄(z̄). We then have

⟨Õ1(w1, w̄1)Õ2(w2, w̄2) · · · Õn(wn, w̄n)⟩ =
n∏

i=1

∣∣∣∣dwdz
∣∣∣∣−hi

w=wi

∣∣∣∣dw̄dz̄
∣∣∣∣−h̄i

w̄=w̄i

⟨O1(z1, z̄1)O2(z2, z̄2) · · ·On(zn, z̄n)⟩ .

(4.16)

• Similar arguments as before may then be used to show that the spacetime dependence
of two and three point functions are completely fixed by conformal invariance.

II Exercise 4.17: Rewrite (3.59) and (3.60) in terms for the 2d case with operators
of given conformal weights. Note that holomorphicity brings further restrictions.

II Exercise 4.18: Rewrite the most general form of a four point function (3.61) for
the 2d case.

NOTE: The 2pt-func’n has a general form

⟨O1(z, z̄)O2(w, w̄)⟩ =
N12

(z − w)2h(z̄ − w̄)2h̄
.

For non-integer 2h and 2h̄ the “propagator” will have branch cuts. Think about the
features this issues may bring, e.g. like “parafermion” and general spin-statistics be-
havior and so on.

4.3 Ward identities for 2d conformal invariance

• Ward identities associated with conformal invariance are those associated with Poincaré
symmetries (3.51) and (3.53), plus those associated with scaling (3.54) and special
conformal transformations.

• The first two, as well as the last two, are expressed in terms energy momentum tensor.

• In 2d these expressions take a simpler form. To analyze this, we start with

Tzz ≡ T (z, z̄) , Tz̄z̄ ≡ T̄ (z, z̄) = T (z, z̄)∗ (4.17)
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II Exercise 4.19: Show that the above are basically the reality conditions for energy
momentum tensor.

• At classical level, conformal invariance implies that

E-M conservation: ∂̄T + ∂Tz̄z = 0 , ∂T̄ + ∂̄Tzz̄ = 0 ,

Scale invariance: Tzz̄ + Tz̄z = 0 , (4.18)

Spin conservation: Tzz̄ − Tz̄z = 0 .

II Exercise 4.20: Rewrite the above in Cartesian coordinate system. Write out the
above conservation relations for Lorentzian signature.

II Exercise 4.21: What about the special conformal transformation invariance?

• At classical level, the 2d conformal invariance hence imply that

∂̄T = 0 ⇒ T = T (z) , ∂T̄ = 0 ⇒ T̄ = T̄ (z̄) ,

Tzz̄ = Tz̄z = 0 .
(4.19)

• At quantum level, we need to examine the Ward identities. The associated four Ward
identities are hence

E-M conservation: ⟨(∂̄T + ∂Tz̄z) X⟩ = −
n∑

i=1

δ2(z − wi)
∂

∂wi

⟨X⟩ (4.20)

⟨(∂T̄ + ∂̄Tzz̄) X⟩ = −
n∑

i=1

δ2(z − wi)
∂

∂w̄i

⟨X⟩ ,

Scale invariance: ⟨(Tzz̄ + Tz̄z) X⟩ = −
n∑

i=1

δ2(z − wi) ∆i⟨X⟩ , (4.21)

Spin conservation: ⟨(Tz̄z − Tzz̄) X⟩ = −
n∑

i=1

δ2(z − wi) si⟨X⟩ , (4.22)

where
X ≡ O1(w1, w̄1)O2(w2, w̄2) · · ·On(wn, w̄n)

and ∆i and si are scaling dimension and spin of the (quasi)primary operators Oi.

II Exercise 4.22: Recalling (4.11), show that variation of X under conformal trans-
formation is

δξ,ξ̄X = −
n∑

i=1

(hi∂iξX+ ξ∂iX) + (h̄i∂̄iξ̄X+ ξ∂̄iX) (4.23)

where X = O1(w1)O2(w2) · · ·On(wn) with Oi being local primary operators of weight
(hi, h̄i).
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• Last two equations can also be written as

⟨Tz̄z X⟩ = −
n∑

i=1

δ2(z − wi) hi⟨X⟩ , ⟨Tzz̄ X⟩ = −
n∑

i=1

δ2(z − wi) h̄i⟨X⟩ , (4.24)

• Next we note that in 2d

� ln |z − w|2 = ∂∂̄ ln |z − w|2 = 2πiδ2(z − w) , (4.25)

and hence one can formally write

δ2(z − w) = 1

2π
∂z̄

1

z − w
=

1

2π
∂z

1

z̄ − w̄

NOTE: In 2d, one can always rewrite metric in a conformally flat form: ds2 =
F (z, z̄)dzdz̄. For this choice � = 1

F
∂∂̄.

• Using the above, Ward identities then reduce to

∂z̄

[
⟨T X⟩ −

n∑
i=1

1

z − wi

∂wi
⟨X⟩ − hi

(z − wi)2
⟨X⟩

]
= 0 , (4.26)

∂z

[
⟨T̄ X⟩ −

n∑
i=1

1

z̄ − w̄i

∂w̄i
⟨X⟩ − h̄i

(z̄ − w̄i)2
⟨X⟩

]
= 0 (4.27)

NOTE: In the above we have absorbed a factor of −2π into the definition of T and T̄ .

II Exercise 4.23: Work out the details and explicitly show the above.

• One may hence arrive at

⟨T X⟩ =
n∑

i=1

1

z − wi

∂wi
⟨X⟩+ hi

(z − wi)2
⟨X⟩+ regular , (4.28)

⟨T̄ X⟩ =
n∑

i=1

1

z̄ − w̄i

∂w̄i
⟨X⟩+ h̄i

(z̄ − w̄i)2
⟨X⟩+ regular . (4.29)

• In particular if X is ANY given local primary operator O(w) of conformal weights
(h, h̄):

⟨T O(w, w̄)⟩ = 1

z − w
∂w⟨O(w, w̄)⟩+

h

(z − w)2
⟨O(w, w̄)⟩+ regular , (4.30)

⟨T̄ O(w, w̄)⟩ = 1

z̄ − w̄
∂w̄⟨O(w, w̄)⟩+

h̄

(z̄ − w̄)2
⟨O(w, w̄)⟩+ regular . (4.31)

NOTE: The above equations, the conformal symmetry Ward identities may be thought
as the conditions for having a non-anomalous conformal symmetry, OR
as the definition of primary operators.
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• Using (4.23) one can write the conformal Ward identities in a compact form:

δξ,ξ̄⟨X⟩ = −
1

2πi

∮
C

dzξ(z)⟨T (z) X⟩+ 1

2πi

∮
C

dz̄ξ̄(z̄)⟨T̄ (z̄) X⟩ (4.32)

where the contour C should include all wi’s, the insertions of Oi.

NOTE: The signs of the contour integrals are with the counter-clock-wise orientation
for the contours.

II Exercise 4.24: Simply the above for ξ in the SL(2, C) part of the conformal
algebra, i.e. for ξ = a + bz + cz2, and for X being a product of TWO or THREE
primary operators. Solve these equations to obtain the results of section 4.2.

4.4 Operator Product Expansion (OPE)

• The above equations are usually denoted by the Operator Product Expansion OPE.
For a general product of two operators in QFTs a relation of the form

Oi(x)Oj(y) =
∑
k

Cijk(x− y)Ok(0) , (4.33)

where the sum is over all possible local operators. The above operator-valued equation
in any QFT is called OPE.

• In an QFT, the OPE coefficients usually are of the form Cijk ∼ 1
|x−y|∆ .

II Exercise 4.25: For a unitary CFT, and assuming that Oi are primary local op-
erators,
I. What is maximum value of ∆?
II. What is the minimum value of ∆?
III. Compute the x dependence of OPE coefficients C12i.

• Physically the main contribution to the OPE sum comes from positive ∆’s. As the
scaling dimension of the operator in the RHS increases, ∆ decreases and the contribu-
tion of the corresponding operator also decreases. That is, the “lightest” operators in
the RHS have the largest contribution. This is the most singular terms in the OPE.
We hence usually only focus on the largest ∆ terms in the RHS and instead of equality
use ∼, i.e.

O1(x1)O2(x2) ∼
N12

|x1 − x2|∆1+∆2
+

C12∆0

|x1 − x2|∆1+∆2−∆0
O∆0(x1) + · · · (4.34)

where ∆0 is the lowest allowed dimension for unitary operators.

• OPE’s are particularly useful in 2d CFTs, as we have separate left and right movers,
the holomorhpic and anti-holomorphic parts.
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• For example, the Ward identities (4.30) can be written as

T O(w) ∼ h

(z − w)2
O(w) +

1

z − w
∂wO(w) , (4.35)

T̄ O(w) ∼ h̄

(z̄ − w̄)2
O(w) +

1

z̄ − w̄
∂w̄O(w) . (4.36)

II Exercise 4.26: Given the OPE of a primary operator O with T as in (4.35), work
out the OPE of descendents of O with T .

II Exercise 4.27: Is descendent of a primary in 2d CFT is a quasi-primary state?

4.4.1 OPE and operator commutators in 2d CFT

Operator ordering in radial quantization:

• In the radial quantization distance from the origin plays the role of time and hence the
time-ordered product of operators (denoted by R is of the form:

R(O1(z)O2(w)) =


O1(z)O2(w) |w| > |z|

O2(w)O1(z) |z| > |w|
(4.37)

and similarly for anti-holomorphic operators.

• we can extract coefficients of the Laurent expansion of operators by integrating them
over appropriate powers of z or z̄ (see (4.43)). Let us e.g. consider

Ô1 =

∮
dz O1(z) , Ô2 =

∮
dz O2(z) .

If the integrals are over the constant |z| circles, then Ôi can defined conserved Noether
charges in the radial quantization.

Then, one can show that

[Ô1, Ô2] =

∮
Origin

dw

∮
w

dz O1(z)O2(w) . (4.38)

II Exercise 4.28: Complete the argument leading to the above. To this end, note
that in second integral there are parts in which |w| > |z| and parts which |z| > |w|.
This integral may then be written in terms of the difference of two contour integrals
where in one |w| > |z| and in the other |z| > |w|.

• Noting (4.38) the operator commutators can be worked out using OPE: the integrand
can be replaced by its OPE expansion.
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4.5 Virasoro generators and energy momentum tensor

• As we discussed the conformal group in any dimension, including 2d, has a geometrical
origin. This may be used to construct conformal algebra as the Lie bracket of the
diffeomorphism generating it. As we did so in section 2.

• Conformal group, on the other hand, may be viewed as symmetries of a given QFT,
and one may hence use Noether theorem to read the corresponding conserved charges
This was worked out in (3.43). This definition may be used to provide a representation
of the conformal algebra through the fields (operators) in a QFT; a representation of
conformal algebra over the field operators.

• One can work out the representation of 2d conformal algebra in terms of 2d CFT fields.

• For this case, one should a little bit “modify” the definition of the conserved charge
in terms of integrals of Noether currents. This is to be done such that it takes care of
holomorphic and anti-holomorphic parts separately. Explicitly, if we have a conserved
current with holomorphic part J(z) and anti-holomorphic part J̄(z̄), then

Q =
1

2πi

∮
dz J(z) , Q̄ =

1

2πi

∮
dz̄ J̄(z̄) . (4.39)

• For the 2d conformal group, the counterpart of (3.43) is hence

Qξ =
1

2πi

∮
dz T (z)ξ(z) , Qξ̄ =

1

2πi

∮
dz̄ T̄ (z̄)ξ̄(z̄) , (4.40)

where ξ(z) is an arbitrary meromorphic function.

• Using the Laurent expansion of ξ, we obtain charges associated with each ξnz
(n+1)

term, Ln:

Ln =
1

2πi

∮
dz T (z)z(n+1) , L̄n =

1

2πi

∮
dz̄ T̄ (z̄)z̄(n+1) n ∈ Z. (4.41)

The choice of zn+1 to be identified with Ln is for later convenience and to match with
our previous notation for the Virasoro algebra.

II Exercise 4.29: Invert the above relations to find:

T (z) =
+∞∑

n=−∞

Lnz
−n−2 , T̄ (z̄) =

+∞∑
n=−∞

L̄nz̄
−n−2 . (4.42)

II Exercise 4.30: Use the Ward identity OPE (4.35) and the above definition (4.42),
to find transformation of a primary operator (4.12). This justifies, once again, that
Ln’s defined in (4.41) and those defined earlier in terms of conformal Killing diffeo-
morphism are indeed generators of the same algebra, the 2d conformal algebra, but
defined on two different spaces.
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• One may use operator language one step further and expand any given primary oper-
ator O(z, z̄) of given weight (h, h̄) as

O(z, z̄) =
∑

n,m∈Z

On,mz
−(n+h)z̄−(m+h̄) . (4.43)

II Exercise 4.31: Using this notion show that (4.12) reduces to

[Ln,Om,p] = [n(h− 1)−m]On+m,p , [L̄n,Om,p] =
[
n(h̄− 1)− p

]
Om,n+p . (4.44)

Alternative, directly use (4.38), (4.35) and (4.43), (4.41) to compute the commutator
(4.44).

• Given that the generators of the Virasoro algebra Ln’s are Laurent expansion coeffi-
cients of the energy momentum tensor T , one can work out the OPE of two T ’s:

T (z)T (w) ∼
c
2

(z − w)4
+

2

(z − w)2
T (z) +

1

z − w
∂T (z) ,

T̄ (z̄)T̄ (w̄) ∼
c̄
2

(z̄ − w̄)4
+

2

(z̄ − w̄)2
T̄ (z̄) +

1

z̄ − w̄
∂̄T̄ (z̄) .

(4.45)

If it were not for the first term, T would have been a primary operator of dimension
two. That is, T is not a primary operator.

II Exercise 4.32: Recalling that T is related to generators of conformal algebra,
argue that it is expected T to have dimension 2.

II Exercise 4.33: Assuming that ⟨T (z)⟩ = 0 show that

⟨T (z)T (w)⟩ =
c
2

(z − w)4
,

⟨T (z)T (w)T (u)⟩ = c

(z − w)2(z − u)2(w − u)2
(4.46)

II Exercise 4.34: Recalling (4.40), work out variation of T under infinitesimal
conformal transformation generated by ξ(z).
Answer:

δξT (z) = −
c

12
∂3zξ(z)− 2∂ξ(z)T (z)− ξ(z)∂zT (z) . (4.47)

II Exercise 4.35: Use the above to show that for FINITE conformal transformation
z → w = w(z),

T ′(w) =

(
dw

dz

)−2 [
T (z)− c

12
{w; z}Schwarzian

]
, (4.48)

where {w; z}Schwarzian is the Schwarzian derivative of w w.r.t. z:

{w; z}Schwarzian =
w′′′

w′ −
3

2

(
w′′

w′

)2

, (4.49)

40



where prime denotes derivative w.r.t. z.

II Exercise 4.36: Show that for SL(2, C) part of 2d conformal transformations,

z → w =
az + b

cz + d
, ad− bc = 1 ,

the Schwarzian derivative vanishes.

• In view of the above exercise we conclude that the energy momentum tensor, while not
a conformal primary, it is quasi-primary.

II Exercise 4.37: Find w = w(z) such that
(
dw
dz

)−2 {w; z}Schwarzian is a constant.

4.6 2d CFT example, free boson theory

• To gain more physical picture of the formal stuff we discussed so far let us consider an
example of free bosonic theory. The theory is described by the action:

S =
1

4π

∫
d2z ∂ϕa∂̄ϕa , a = 1, 2, · · · , N . (4.50)

• The conformal dimension of the ϕa fields read from the action is (0, 0). Therefore, ∂ϕa,
∂̄ϕa are respectively primary fields of weight (1, 0) and (0, 1).

• E.o.M and mode expansion:

�ϕa = 0 ⇒ ϕa = ϕa(z) + ϕ̄a(z̄) , (4.51)

where

ϕa(z) = ϕa
0 +

1

2
pa ln z +

1√
2

∑
n ̸=0

1

n
αa
nz

n , ϕ̄a(z̄) = ϕ̄a
0 +

1

2
p̄a ln z̄ +

1√
2

∑
n ̸=0

1

n
ᾱa
nz̄

n .

(4.52)
NOTE: The above is the solution with PERIODIC boundary conditions. That is,
under z → e2πiz it goes to itself, except for the ln z term.

• The surface term coming from variation of the action (4.50) is

SSurface =
1

4π

∫
d2z ∂(δϕa∂̄ϕa) + ∂̄(δϕa∂ϕa). (4.53)

This term may be set to zero either by periodic boundary conditions or with Neumann
or Dirichlet boundary conditions. See the exercise at the end of subsection 4.6.1 for
quantization of the theory with other boundary conditions.

• To perform canonical quantization we need to know the conjugate momenta,

Πa(z, z̄) = πa(z) + π̄a(z̄) ,

πa(z) =
pa

2z
+

1√
2π

∑
n ̸=0

αa
nz

n−1 , π̄a(z̄) =
p̄a

2z
+

1√
2π

∑
n ̸=0

ᾱa
nz̄

n−1 . (4.54)

NOTE: As we see π(z) and π̄(z̄) have the Laurent expansion and are meromorphic as
expected from a primary field.
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• Imposing canonical quantization commutation relations, we obtain

[ϕa
0, pb] = iδab , [αa

n, α
b
m] = nδabδm+n ,

[ϕ̄a
0, p̄b] = iδab , [ᾱa

n, ᾱ
b
m] = nδabδm+n , (4.55)

[ϕa
0, p̄b] = [ϕ̄a

0, pb] = 0 , [αa
n, ᾱ

b
m] = 0 .

Since the holomorphic and anti-holomorphic parts decouple hereafter we only consider
the holomorphic part.

II Exercise 4.38: Work out (4.55).

II Exercise 4.39: Show that the energy momentum tensor T and T̄ are given by:

T = − : ∂ϕa∂ϕa : , T̄ = − : ∂̄ϕa∂̄ϕa : (4.56)

where : : denotes the normal ordering.
NOTE: The normal ordering is needed because we should choose the vacuum state
such that ⟨T ⟩ = ⟨T̄ ⟩ = 0.

II Exercise 4.40: Work out the Virasoro generators using the above expressions for
T and T̄ and (4.41):

L0 =
1

2
papa +

∑
n>0

αa
−nα

a
n , L̄0 =

1

2
p̄ap̄a +

∑
n>0

ᾱa
−nᾱ

a
n ,

Ln =
∑
m∈Z

αa
n−mα

a
m : , L̄n =

∑
m∈Z

: ᾱa
n−mᾱ

a
m : , n ̸= 0 ,

(4.57)

Work out the normal ordering explicitly and find the “zero point energy”.

II Exercise 4.41: Show that

αa
n|0⟩ = ᾱa

n|0⟩ = 0 , n > 0 ⇒ Ln|0⟩ = 0 , n ≥ −1. (4.58)

NOTE: pa|0⟩ , p̄a|0⟩ is not necessarily zero.

• We can work in path integral quantization as well. To do so we need to start with

⟨ϕa(z, z̄)ϕb(w, w̄)⟩ = −
1

2
δab(ln(z − w) + ln(z̄ − w̄)) + const , (4.59)

or equivalently,

⟨∂ϕa(z)∂ϕb(w)⟩ = −
1

2

δab
(z − w)2

∼ ∂ϕa(z)∂ϕb(w) ,

⟨∂̄ϕa(z̄)∂̄ϕb(w̄)⟩ = −
1

2

δab
(z̄ − w̄)2

∼ ∂̄ϕa(z)∂̄ϕb(w) . (4.60)

In the above the second equalities have been written as an OPE.
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II Exercise 4.42: Work out the following OPEs:

T (z)∂ϕa(w) ∼
∂ϕa(z)

(z − w)2
∼ ∂ϕa(w)

(z − w)2
+
∂2ϕa(w)

z − w
. (4.61)

i.e. ∂ϕa is a primary of weight (1, 0).

II Exercise 4.43: Consider the operator : F (ϕ) :. What is the condition on F if
we demand this operator to be a primary. What is the relation between its conformal
weights hF , h̄F?

• As we see the central charge is equal to the number of fields.

• Using the above and (4.56) one can work out T (z)T (w) OPE:

T (z)T (w) =: ∂ϕa(z)∂ϕa(z) :: ∂bϕ(w)∂ϕb(w) :

= 2⟨∂ϕa(z)∂ϕb(w)⟩⟨∂ϕa(z)∂ϕb(w)⟩+ 2 · 2⟨∂ϕa(z)∂ϕb(w)⟩ : ∂ϕa(z)∂ϕb(w) :

∼ N/2

(z − w)4
+

2T (w)

(z − w)2
+

1

z − w
∂zT (w) . (4.62)

II Exercise 4.44: Work out the commutation relations of Ln and read the central
charges:

c = N , c̄ = N . (4.63)

Vertex operators. One may then construct states/operators which are eigen-states of pa
and p̄a. These are called VERTEX operators:

Vk(z, z̄) =: eikaϕa(z,z̄) : (4.64)

II Exercise 4.45: Show that

pa(Vk(0)|0⟩) = ka(Vk(0)|0⟩). (4.65)

Note that in the above the vacuum state is defined such that pa|0⟩ = 0.

II Exercise 4.46: Show that the above vertex operator is a primary state with confor-
mal weights (h, h), h = k2/2.

II Exercise 4.47: Work out the following OPE relation

Vk(z, z̄)Vp(w, w̄) ∼ |z − w|2k·pVk+p(w, w̄) , (4.66)

II Exercise 4.48: Correlation function of n vertex operators. Show that

⟨Vk⃗1(z1, z̄1)Vk⃗2(z2, z̄2) · · ·Vk⃗n(zn, z̄n)⟩ =
∏
i<j

|zi − zj|2k⃗i ·⃗kj δ(
∑
i

k⃗i) , (4.67)

where k⃗i are N-vectors .
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4.6.1 Physical meaning of the central charge

NOTE: The central charge c has many different interpretations and roles in the CFT’s.
For example:

• c is usually attributed to number of dynamical fields and/or d.o.f of the 2d CFT.

• Another interpretation for c comes from the above exercise: L0 = L0 − c
24
. L0 + L̄0

(which generator of Witt algebra) is the Hamiltonian of the 2d CFT in the radial
quantization on the plane, while L0+L̄0 is Hamiltonian on the cylinder. The difference
between the two c+c̄

24
, is then attributed to Casimir energy of the theory on cylinder.

This Casimir energy appears due to non-trivial (periodic) boundary conditions on the
cylinder. In this interpretation, it is clearly seen that central charge has a quantum
nature.

To see the above, let us move from quantization on the 2d plane with (z, z̄) to a
cylinder. Upon the coordinate transformation (3.2)

z → w =
R

2π
ln z , (4.68)

the plane is mapped to a cylinder of radius R. Under the above (4.48) takes the form

T (z)pl → T (w)cyl =

(
2π

R

)2 [
T (z)plz

2 − c

24

]
,

and therefore,

⟨T (w)cyl⟩ = −
(
2π

R

)2
c

24
, (4.69)

IF ⟨T (z)pl⟩ = 0.

II Exercise 4.49: Use (4.41) to read the Virasoro generators associated with the
Tcyl. In particular show that

Lcyl
n = Lpl

n −
(
2π

R

)2
c

24
δn . (4.70)

II Exercise 4.50: Given that Lpl
n satisfies Virasoro algebra, work out the algebra

of Lcyl
n . How would the central charge term change?

• The above result may also be reached in the operator formulation and canonical quan-
tization method, once we used radial (cylindrical) quantization. There we need to
impose periodic boundary conditions and use ζ-function regularization for summing
over the zero point energies of the oscillators (associated with each mode). That is,
taking the steps of computing the Casimir energy. This will lead to −c/12 for the zero
point energy.

II Exercise 4.51: Take the steps of computing the Casimir energy for a free boson
theory on cylinder outlined above explicitly and compute the zero-point energy.
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II Exercise 4.52: Primary operators on the cylinder vs. on the plane: The mode
expansion (4.43) was given for a primary operator of conformal dimension (h, h̄) on
the plane. Write the same operator on the cylinder of radius R = 2π cf. (4.68) and
show that

O(w, w̄)cyl. =
∑

n,m∈Z

On,me
−wne−w̄m . (4.71)

That is, the conventions in (4.43) is chosen such that on the cylinder O has periodic
boundary conditions, i.e. under w → w+ 2πi and w̄ → w̄− 2πi it remains invariant.

• As mentioned the mode expansions and the analysis above are all true for periodic
boundary conditions on the fields, i.e. ϕa(e

2πiz) = ϕa(z).

II Exercise 4.53: Show that for anti-periodic boundary conditions:

ϕa(e
2πiz) = −ϕa(z) (4.72)

the boundary term still vanishes and hence (4.72) is a valid boundary condition.
I. Work out the mode expansion for ϕa and perform the canonical quantization proce-
dure.
II. Work out the energy momentum tensor and Virasoro generators Ln coefficients.
III. Compute the zero point energy and the central charge for this case.

II Exercise 4.54: Show that for 2d CFTs on upper half-plane with Neumann
boundary conditions:

(∂ + ∂̄)ϕa

∣∣
Im z=0

= 0 (4.73)

the boundary term still vanishes and hence (4.73) is a valid boundary condition.
I. Work out the mode expansion for ϕa and perform the canonical quantization proce-
dure.
II. Work out the energy momentum tensor and Virasoro generators Ln coefficients.
III. Compute the zero point energy and the central charge for this case.

II Exercise 4.55: Show that for 2d CFTs on upper half-plane with Dirichlet bound-
ary conditions:

ϕa

∣∣
Im z=0

= 0 (4.74)

the boundary term still vanishes and hence (4.74) is a valid boundary condition.
I. Work out the mode expansion for ϕa and perform the canonical quantization proce-
dure.
II. Work out the energy momentum tensor and Virasoro generators Ln coefficients.
III. Compute the zero point energy and the central charge for this case.

II Exercise 4.56: Orbifold theory: The free bosonic action (4.50) has a global
O(N) symmetry acting on its fields. Let us for simplicity consider N = 2 case. Given
this symmetry one has a bigger freedom in choosing the boundary conditions, because
now the boundary term should vanish when we sum over a indices and not for each
individual field. Consider the following boundary conditions:

ϕa(e
2πiz) = Rab(θ)ϕb(z) , Rab(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (4.75)

where θ is an arbitrary angle.
I. Show that (4.75) is a valid boundary condition.
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II. Show that if we want standard periodic fields to also be included in (4.75) we should
take θ = 2π/k , k ∈ Z.
III. Work out the mode expansion for ϕa and perform the canonical quantization pro-
cedure.
IV. Work out the energy momentum tensor and Virasoro generators Ln coefficients.
V. Compute the zero point energy and the central charge for this case.

4.6.2 Deformation of a given 2d CFT

• So far we have discussed an example of free theory. One may add interaction terms to
the 2d CFT to obtain more interesting theories.

• This may be done noting that Lagrangian is a (1, 1) primary operator. That is, de-
forming the theory by ANY primary (1, 1) operator we obtain (at least at classical
level) a new 2d CFT. Therefore, there is a one-to-one relation between the spectrum
of ALL (1, 1) operators and 2d CFT deformations.

• We also usually demand that the Lagrangian do not involve more that two derivative
terms, due to appearance of ghosts in higher derivative theories.

• For the free bosonic theory discussed here, the (1, 1) operators which DOES NOT
involve field derivatives are of the form

O[f ] =

∫
dNkδ(k2 − 2)f(ka)e

ikaϕa , ∀f(ka) . (4.76)

• Given a generic (1, 1) operator like O[f ], the action of the deformed theory is

L =
1

4π
∂ϕa∂̄ϕa + O[f ] . (4.77)

• Note that the free Lagrangian has a global O(N) symmetry acting on real-valued ϕa

fields. Recalling that O(N) has only one invariant two tensor (ηab), generically the
interaction term explicitly breaks, the global O(N) symmetry. If f(ka) is non-zero for
a single given N -vector ka, then this symmetry is broken to the subgroup of ka which
keeps this vector invariant, i.e. O(N − 1).

• We can have (1, 1) operators which involve first derivatives of ϕa:

Oab =: F (ϕ)∂ϕa∂̄ϕb : , ∀a, b, & some function F (ϕ) . (4.78)

II Exercise 4.57:
I. What is the condition on F (ϕ) for the Oab to be (1, 1)?
II. Write out the most general form of the deformation with (4.78) operators.

NOTE: Although there are (1, 1) operators in the F (ϕ)∂∂̄ϕa family, since they vanish
on-shell, do not provide a new form of deformation.
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4.7 Free 2d fermions

After discussing the 2d bosons, we consider 2d fermions. We should first construct irre-
ducible 2d spinor representations. A brief discussion on construction of fermions in generic
dimensions has appeared in the appendix A. Here we review the 2d case.

• In 2dDirac spinors are 21 = 2 component complex-valued spinors. The corresponding
γ matrices are

γ1 =

(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
. Ψ =

(
ψ1

ψ2

)
. (4.79)

II Exercise 4.58: Compute the explicit form of γz = (γ1 + iγ2)/2 , γ z̄ = (γz)† =
(γ1 − iγ2)/2 .

• In 2d fermions can hence be Majorana-Weyl. Γ = σ3 and therefore 2d Weyl fermions
is one-complex valued component; in the notation above eg. Left handed spinor is ψ1

while Right handed fermion is ψ2. Imposing the Majorana condition is then easy: just
take Ψ to be real-valued.

• In summary, Weyl-Majorana 2d spinors are real-valued one-component fields.

• Dirac action:

S =
1

2π

∫
d2z Ψ̄γi∂iΨ =

1

2π

∫
d2z ψ1∂̄ψ1 + ψ2∂ψ2 . (4.80)

NOTE: As discussed, 2d fermions can be Weyl-Majorana and we may choose to work
with only ψ1 OR ψ2 fields. Here for illustration purposes we considered 2d Dirac
fermions.

NOTE: The scaling dimension of 2d fermion is 1/2.

• E.o.M:
∂̄ψ1 = 0 , ∂ψ2 = 0 . (4.81)

That is, the e.o.m implies that the Left handed fermion is holomorphic while the Right
handed is anti-holomorphic:

ψ1 = ψ1(z) , ψ2 = ψ2(z̄) . (4.82)

• Boundary conditions: Upon variation of the action the surface terms are

Ssurface =
1

2π

∫
d2z ∂(ψ1δψ1) + ∂̄(ψ2δψ2) , (4.83)

The above surface term vanishes if we impose periodic or anti-periodic boundary con-
ditions:

Periodic bc : ψ(e2πiz) = −ψ(z) , (4.84)

Anti-periodic bc : ψ(e2πiz) = +ψ(z) . (4.85)
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NOTE: Above equations have been written for fields on the plane, while the names of
periodic and anti-periodic have been given for fields on the CYLINDER.
II Exercise 4.59: Noting that fermion ψ(z) is a (1/2, 0) primary field, show that
on the cylinder (cf. (4.68)) ψ(w) is indeed periodic/anti-periodic.

NOTE: The above bc’s has been written for holomorphic fermion fields. Similar bc’s
can of course be imposed on anti-holomorphic parts, independently of the ones imposed
on the holomorphic fermions.
NOTE: In the context of string theory periodic and anti-periodic bc’s are respectively
called Ramond and Neveu-Schwarz boundary conditions.

• Mode Expansions:

Periodic,“Ramond” : ψ(z) =
∑
n∈Z

dnz
−(n+1/2) , (4.86)

Anti-periodic, “Neveu-Schwarz” : ψ(z) =
∑

r∈Z+1/2

brz
−(r+1/2) . (4.87)

• Quantization: The momentum conjugate to ψ is itself, as is seen from the action.
Imposing the equal time canonical anti-commutation relations we find:

{br, bs} = δr+s , {dm, dn} = δm+n . (4.88)

• Energy momentum tensor:

T = −1

2
: ψ1∂ψ1 : , T̄ = −1

2
: ψ2∂̄ψ2 : . (4.89)

II Exercise 4.60: Show that the Virasoro generators are

NS sector: Ln =
1

2

∑
s∈Z+1/2

(s+
1

2
) : bn−sbs : , L0 =

∑
r>0,r∈Z+1/2

rb−rbr ,

(4.90)

Ramond sector: Ln =
1

2

∑
m∈Z

(m+
1

2
) : dn−mdm : , L0 =

∑
m>0,m∈Z

md−mdm +
1

16
,

(4.91)

II Exercise 4.61: Compute [Ln, br] and [Ln, dm] commutators and confirm that the
ψ field is indeed a (1/2, 0) primary field.

• The central charge.
II Exercise 4.62: Given the above expression for the Ln generators, work out the
central charge of the theory for the Weyl-Majorana free fermion is 1/2.

• Path Integral treatment of fermionic system. We start with the two-point function
for fermions:

⟨ψ1(z)ψ1(w)⟩ = 1

z − w
, ⟨ψ2(z̄)ψ2(w̄)⟩ = 1

z̄ − w̄
. (4.92)
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II Exercise 4.63: Given the above show that

T (z)ψ(w) ∼ 1/2

(z − w)2
ψ(w) +

1

z − w
∂wψ(w) , (4.93)

and also

T (z)T (w) ∼ 1/4

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
. (4.94)

II Exercise 4.64: The above fields (4.86) and (4.87) are written on the plane.
I. Write them on cylinder.
II. Write the two point function (4.92) for cylindrical fields.
III. Compute the energy momentum tensor for the theory on cylinder, Tcyl.
IV. Compute ⟨T ⟩ and show that

⟨Tcyl⟩ =


−
(
2π
R

)2 1
48

NS sector

+
(
2π
R

)2 1
24

Ramond sector

(4.95)

II Exercise 4.65: Classify all the (1, 1) operators one can build out of fermion fields
ψ1 and ψ2.
Write all the (1, 1) fields made out of a primary scalar field ϕ and fermionic fields ψ.

• We discussed two examples of simple 2d CFTs to gain some intuition about the struc-
ture of 2d CFTs and their central charge, and classified all their perturbative defor-
mations which preserve conformal symmetry at classical level.

• It yet remains to be checked if all such deformations which are parameterized by (1, 1)
primary operators also keep conformal symmetry at quantum level.

• We computed the perturbative central charge, while it can in principle receive correc-
tions from the deformations added to the free energy momentum tensor.

4.8 More on Unitary Rep’s of Virasoro algebra

• There are different ways to classify 2d CFTs, one way is based on the value of their
central charge and their physical Hilbert space, i.e. the spectrum of all primary op-
erators. In this section we will try to see how much information we can extract from
“algebraic” restrictions like Unitarity of representations of Virasoro algebra of a given
central charge c, without delving into the details of the theory, or specifying the explicit
form of the energy momentum tensor T .

• As we discussed earlier, unitarity (positivity of norm) of descendent of the vacuum
||Ln|0⟩|| ≥ 0 for all n ≥ 2 implies c ≥ 0.

• Positivity of norm for “level one” descendent of a primary state |h⟩, i.e. ||L−1|h⟩|| ≥ 0
implies h ≥ 0.

• As we discussed earlier in section 3, higher level descendents, which in the d > 2
cases can only be constructed by acting higher powers of Pµ on the primary, for level
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two leads to an extra condition on scalar reps and at higher levels leads to no extra
condition. So the level two analysis in d > 2 exhausted all the unitarity conditions on
the representations.

• In d = 2 case, however, there are many more ways to construct descendents of a given
primary state: we have the option of acting by any combination of L−n’s; that is how
we construct states in the Verma module of a given primary. NOTE: Compared to
the d > 2 cases, that is the action of Lm

−1L̄
n
−1 which creates level l = m+n descendents

corresponding to P l
µ descendent.

• To start, let us consider the unitarity of level K states in the Verma module of vacuum:

|{ki}⟩ ≡
K∏
i=1

L−ki|0⟩ , ki ≥ kj if i > j ,
∑

ki = K . (4.96)

II Exercise 4.66: Using scale invariance show that ⟨{ki}|{pj}⟩ ∝ δ(
∑
ki −

∑
pj).

• To show unitarity of all states in the vacuum Verma module one should hence show
that for all states in level K the eigenvalues of the matrix

M vac
K ≡ ⟨{ki}|{pj}⟩

are non-negative.
II Exercise 4.67: Show that M vac

K is a PK × PK matrix where PK is number of
partitions of integer K into non-negative integers.
II Exercise 4.68: Show that all elements in M vac

K with one or more of ki’s equal to
one leads to a zero eigenvalue in M vac

K . Using this, find number of zero eigenvalues of
M vac

K .

• One can show that all eigenvalues of M vac
K are non-negative if c ≥ 0. Therefore, from

the vacuum Verma module we find no extra condition on unitarity.

• Next, let us consider descendents of a given primary |h⟩, V (h; c):

|h; {ki}⟩ ≡
K∏
i=1

L−ki|h⟩ , (4.97)

II Exercise 4.69: Using scale invariance show that

⟨h; {ki}|h; {pj}⟩ ∝ δ(
∑

ki −
∑

pj).

• We again focus on

Mh
K ≡ ⟨h; {ki}|h; {pj}⟩ ,

∑
ki = K.

– At level one, K = 1, we just get h ≥ 0.

– at level two, K = 2, the matrix M is 2× 2:

M11 = ⟨h|L2
1L

2
−1|h⟩ = 4h(2h+ 1) , M12 = ⟨h|L2

1L−2|h⟩ = 6h , M11 = ⟨h|L2L−2|h⟩ = 4h+
c

2
.

(4.98)
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To have positive eigenvalues M should have positive trace and determinant.
Trace is already positive. The determinant is

detMh
2 = 32(h− h1,1)(h− h1,2)(h− h2,1) = 32h

[
(h− 1

4
)2 +

1

16
(c− 1)(h+ 2)

]
,

(4.99)
where

h1,1 = 0 , h1,2 =
1

16

[
5− c+

√
(1− c)(25− c)

]
, h2,1 =

1

16

[
5− c−

√
(1− c)(25− c)

]
.

(4.100)
As we see from the second equality in (4.99), the determinant is positive for any
h IFF c ≥ 1.

– Higher level, K > 2: One can show that

detMh
K = NK

∏
p, q ≥ 1
pq ≤ K

(h− hp,q(c))PK−pq , (4.101)

where NK is ia positive number, Pm is number of partitions of a given integer m
into non-negative integers and

hp,q(c) =
1

24
(c− 1) +

1

4
(pA+ + qA−)

2 , A± =
1

24

(√
1− c±

√
25− c

)
.

(4.102)

The above can also be written as

hp,q(r) =
(p(r + 1) + qr)2 − 1

4r(r + 1)
, c = 1− 6

r(r + 1)
. (4.103)

NOTE: detMh
K is called Kac determinant.

– Kac determinant vanished if h = hp,q(c).
II Exercise 4.70:
I. Compute Mh

K for large h, i.e. for h≫ K ∼ 1.
II. Show that for large h the largest element in Mh

K comes from LK
−1|h⟩.

III. Diagonalize Mh
K for large h.

• Given the Kac determinant one can now study the unitarity condition which is posi-
tivity of the determinant.

• Since h > 0,
hp,q(c) ≤ 0 ∀p, q ≥ 1 ⇒ det Mh

K ≥ 0 . (4.104)

4.8.1 Unitary Rep’s for c ≥ 1 case

We show below that the positive hp,q condition (4.104) holds for c ≥ 1 cases.
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• If 1 ≤ c ≤ 25 then
A± = ±a+ ib ⇒ hp,q(c) = hq,p(c)

∗ (4.105)

Next, recall that the terms in the Kac determinant are of the form [(h− hp,q)(h− hq,p)]P
which are hence positive.

• For c > 25 cases

A± = i(a± b) , a2 =
c− 1

24
, b2 =

c− 25

24
= a2 − 1 . (4.106)

and hence

hp,q(c) = a2 − 1

4
[p(a+ b) + q(a− b)]2 ≤ a2 − 1

4
(a+ b+ a− b)2 ≤ 0 . (4.107)

where we used p, q ≥ 1.

So we proved the desired.

II Exercise 4.71: Show that for c = 1 case, for K = 2 case we have zero norm state
IF h = 1/4.

II Exercise 4.72: Find the zero norm state of level two K = 2 for c < 1 model. Find
zero norm state(s) of level K = 3 of c < 1 models.

II Exercise 4.73: Show that for c > 1 case we do not have zero norm states in the
Verma module of primary h > 0. Show this for K = 2, 3 cases first and then generalize to
higher K.

4.8.2 Unitary Rep’s for c < 1 case

• In case case it is more convenient to use (4.103) parametrization in terms of r.

• In this parametrization 0 < c < 1 yields r > 2 or r < −3. Since

hp,q(r) =
[(r + 1)p− rq]2 − 1

4r(r + 1)
= hq,p(−(r + 1)) , (4.108)

and in the Kac determinant we cover all p, q cases, we can safely restrict ourselves to
r > 2 region only.

• To avoid non-unitarity the only way is to make hp,q(r) to vanish at some point and cut
the region where hp,q(r) becomes positive.

• Demanding hp,q(r) to have zeros for some p, q ≥ 1 tells us that r should be an integer.

• Moreover, to remain in the negative hp,q(r) region, 1 ≤ p < r and 1 ≤ q < p.

• It happens that the above conditions are necessary and sufficient for unitraity of c < 1
models.

• In the c < 1 theories, therefore, the scaling dimension of primaries are bound to be
larger than hp,q(r) for any given 1 ≤ p < r, 1 ≤ q < p.
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4.8.3 Minimal models

• There is a complete classification of c ≤ 1 2d CFT’s. A interesting class of c ≤ 1
models are minimal models. These are models with finite number of primary states.

• The unitarity requries that the weight of these primaries are h ≥ hp,q. So the lowest
weight primaries are given by h = hp,q(r). The condition of having FINITE number of
primaries then requires that

hp,q = hp+m,q+n , for some integer m, n . (4.109)

The above holds IFF

c = 1− 6
(m− n)2

mn
, hp,q =

(pm− qn)2 − (m− n)2

4mn
, (4.110)

wherem,n are coprime integers larger or equal to two and 1 ≤ p ≤ n−1, 1 ≤ q ≤ m−1.
II Exercise 4.74: Determine m,n in terms of our earlier parametrization r. What
does r > 2 correspond to in terms of m,n?

NOTE: Minimal models are hence specified by two coprime integers m,n and usually
denoted by M(m,n).

II Exercise 4.75: Using (4.109) show that number of primary states in the minimal
model given by (m,n) is (m− 1)(n− 1)/2.

• Some of the most interesting stat.mech. or cond.mat. models around their critical
point are examples of minimal models. These include, 2d Ising, 2d Potts model, O(N)
model, Landau Ginzburg model (i.e a scalar theory with ϕ2(r−1) potential).

NOTE: Recently, minimal models have received special attention in connection with AdS3

Higher Spin Theories. For this topic See recent papers by Gaberdiel and Gopakumar.

4.9 More on structure of OPE and, 3 and 4 point functions

• We discussed that OPE in local QFTs is a useful tool to analyze and compute corre-
lators of the theory.

• In d > 2 CFTs conformal invariance can be used to restrict further the form of OPE
coefficients.

• In general the OPE of two primary operators in 2d CFTs, as in higher dimensional
examples, can be written as

Oi(z, z̄)Oj(0) =
∑

CijkOk(0)z
hk−hi−hj z̄h̄k−h̄i−h̄j , .

The notable point in the above OPE is that the operators Ok appearing in the RHS
are not necessarily primary, while they are in general quasi-primary, i.e. they have
definite conformal weight but can be a primary or descendent of a primary.
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• On the other hand, we know the space-time dependence of three point function of
primary operators O1,O2, co3 is fixed by conformal symmetry:

⟨O1(z1, z̄1)O2(z2, z̄2)O3(z3 z̄3)⟩ =
Cp

123∏
i<j, k ̸=i,j (zi − zj)hi+hj−hk · (z̄i − z̄j)h̄i+h̄j−h̄k

(4.111)
where superscript p on Cp

123 is to emphasize that this is for primary operators.

• The question is now how to read the OPE coefficients from the three point function of
primaries.

4.9.1 OPE coefficients from three point function of primaries

• It turns out that one can deduce the OPE coefficients of descendents appearing in the
RHS in terms of that of the corresponding primary. To see this let us rewrite the above
OPE as

Oi(z, z̄)Oj(0) =
∑

primary

∑
{ki}

∑
{k̄i}

C
{ki},{k̄i}
ijp

K,K̄∏
i=1,̄i=1

L−kiL̄−k̄iOp(0) z
hp+K−hi−hj z̄h̄p+K̄−h̄i−h̄j

(4.112)
where now Op only involve primary operators and the whole tower of descendents above
them.

• One may decompose the OPE coefficients in terms of primary and descendent parts:

C
{ki},{k̄i}
ijp ≡ Cijp N

p{ki}
ij N̄

p{k̄i}
ij (4.113)

where we have chosen the normalization such that N
p{0}
ij = N̄

p{0̄}
ij = 1.

• One may then define the operator

φp
ij(z) ≡

∑
{ki}

N
p{ki}
ij zK

K∏
i=1

L−ki (4.114)

and similarly for the anti-holomorphic part φ̄p
ij(z̄).

• Using the above the OPE now takes the form:

Oi(z, z̄)Oj(0) =
∑

primary

Cijpz
hp−hi−hj z̄h̄p−h̄i−h̄j φp

ij(z)φ̄
p
ij(z̄) Op(0) . (4.115)

So we have succeeded in the first step of reducing the OPE to only primary sector.
The Verma module effects are now “hidden” in the operator-valued φ coefficients.
NOTE: The above OPE may also be written as

Oi(z, z̄)|Oj⟩ =
∑

primary

Cijpz
hp−hi−hj z̄h̄p−h̄i−h̄j φp

ij(z)φ̄
p
ij(z̄)|Op⟩ . (4.116)
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II Exercise 4.76: Noting that the three-point function of generic primary opera-
tors, and using the fact that one of the points can always be set to origin and the other
taken to infinity, we have

limitw,w̄→∞(w2hiw̄2h̄i⟨Oi(w, w̄)Oj(z, z̄)Ok(0)⟩) = ⟨Oi|Oj(z, z̄)|Ok⟩
= Cijkz

hi+hk−hj z̄h̄i+h̄k−h̄j , (4.117)

show that the OPE coefficients Cijp can be read from three point function of appropri-
ate primaries. NOTE: One can still use the remaining conformal transformation
freedom to set z = z̄ = 1 in (4.117).

• Computing φp
ij(z). To this end, we need N

p{ki}
ij coefficients. The latter are c-number

coefficients which only depend on hi, hj and central charge c as well as the set of {ki}.
II Exercise 4.77: To compute φp

ij(z) use the OPE (4.116) and act on both sides
by Virasoro generators Ln. Recalling that Oi and Oj are primary we know the LHS.

Using this find differential equations governing φp
ij(z) and from there solve for N

p{ki}
ij

coefficients.

4.9.2 4 point functions, conformal blocks

• In previous subsection we argued how the information of three point function of primary
operators can be used to read the OPE coefficients of two primary operators.

• On the other hand, having the OPE one can reduce computation of four point function
of primary operators to computation of two point functions.

• In this subsection we combine these information to compute four point functions. Con-
sider a generic four point function of primaries

Gp
1234(zi) = ⟨O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)⟩ ,

and choose the SL(2, C) freedom to map z1 →∞, z4 = 0, z3 = 1 and call z2 = z, and
define

G
p
1234(z, z̄) ≡ ⟨O1|O2(z, z̄)O3(1, 1)|O4⟩ = limitz1,z̄1→∞

(
z2h1
1 z̄2h̄1

1 Gp
1234(z1, z, 1, 0)

)
(4.118)

II Exercise 4.78: What is the relation between the two conformal cross-ratios and
the coordinate z?

The goal is hence computing G
p
1234. NOTE: Order of indices 1234 in G is important.

• We can now use the OPE (4.116) twice for O3(1, 1)|O4⟩ and for (O†
2(z, z̄)|O1⟩)† to

compute G
p
1234(z, z̄). Explicitly, we have

G
p
1234(z, z̄) =

∑
p

∑
p′

C∗
12pC34p′ z

hp−h1−h2 z̄h̄p−h̄1−h̄2 ⟨Op|φp
12(z)

†φ̄p
12(z̄)

† · φp′

34(1)φ̄
p′

34(1)|Op′⟩

=
∑
p

C∗
12pC34p z

hp−h1−h2 z̄h̄p−h̄1−h̄2 ⟨Op|χp
1234(z) · χ̄

p
1234(z̄)|Op⟩ ,

(4.119)
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where in the second line we used the Verma module orthogonality relation (4.15) and

χp
1234(z) = φp

12(z)
†φp

34(1) , χ̄p
1234(z̄) = φ̄p

12(z̄)
†φ̄p

34(1) . (4.120)

In the above we used the fact that Left and Right mover Virasoro generators commute.
NOTE: In (4.119) we only remain with a sum over primaries, the information about
Verma modules are hidden inside χ1234 coefficients.
NOTE: The holomorphic and anti-holomorphic parts of the amplitude are now decou-
pled.

• Next, we use (4.114) to explicitly write χ1234 in terms of Virasoro generators

χp
1234(z) =

∑
{ki}

∑
{k′i}

(N
p{ki}
12 )∗ N

p{k′i}
34 zK

K∏
i=1

L+ki

K′∏
i=1

L−k′i
(4.121)

As we see the operator part of these coefficients depend only on Virasoro generators
and their numeric coefficients are only functions of the conformal weight of Oi operators
and the central charge.

• It is customary to use the OPE expansion (4.116) only for ⟨O1|O2(z, z̄) (i.e. for the
operator defined at z and keep O3(1)|O4⟩ intact. This leads to

G
p
1234(z, z̄) =

∑
p

C∗
12pC34p z

hp−h1−h2 z̄h̄p−h̄1−h̄2 ·Ap
12→34(z)Ā

p
12→34(z̄) (4.122)

where

A
p
12→34(z) =

∑
{ki}

(N
p{ki}
12 )∗zK

⟨Op|
∏K

i=1 L+kiO3(1)|O4⟩
⟨Op|O3(1)|O4⟩holo

(4.123)

where ⟨Op|O3(1)|O4⟩holo =
√
C34p. Similar expression also hold for anti-holomorphic

part Āp
12→34(z̄).

NOTE: As we note the holomorphic and anti-holomorphic parts are again decoupled.
NOTE: The coefficients Ap

12→34(z) are called conformal blocks.

• The coefficients of Laurent expansion for the conformal blocks, Ap,K
12→34

A
p
12→34(z) =

∞∑
K=0

zKAp,K
12→34,

can be computed. Here we list the first three:

A
p,0
12→34 = 1 ,

A
p,1
12→34 =

(hp + h2 − h1)(hp + h3 − h4)
2hp

,

A
p,2
12→34 =

(hp + h2 − h1)(hp + h3 − h4)(hp + h2 − h1 + 1)(hp + h3 − h4 + 1)

4hp(2hp + 1)
+

+
1

8

[(
h1 + h2 +

hp(hp − 1)− 3(h1 − h2)2

2hp + 1

)(
h3 + h4 +

hp(hp − 1)− 3(h3 − h4)2

2hp + 1

)]2
×
(
c+

2hp(8hp − 5)

2hp + 1

)−1

. (4.124)

NOTE: As we see the coefficients Ap,K
12→34 show the 12↔ 34 “exchange symmetry”.
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II Exercise 4.79: One could have used to map z2 = 1 and z3 = z. Repeat the above
with this choice and find the corresponding conformal blocks and in this way PROVE the
exchange symmetry mentioned above.

4.10 2d CFTs on torus and modular invariance

• 2d CFTs, as QFTs in any other dimension, can be defined on different manifolds.

• However, if the conformal symmetry is not anomalous, for a CFT this manifold may
be defined up to conformal transformations.

• By very definition conformal transformations are only based on differential geometric
notions like metric and diffeomorphism. However, to define a geometry we also need
information about the global topological structure.

• In this part we study 2d CFT on a non-trivial topology and in particular two torus
T 2. This is relevant for non-zero temperature 2d CFTs. Before studying this problem,
we make a detour to classification of 2d surfaces.

4.10.1 Classification of 2d surfaces

• Euclidean 2d surfaces may be classified by their metric, topology and orientablility.

– Metric: Local properties of manifolds are specified by their metric. In 2d, upon
the choice of coordinates, metric can always be locally brought to conformally flat
form:

ds2 = e2ϕ(dx2 + dy2) = e2ϕdzdz̄ . (4.125)

II Exercise 4.80: Write down the metric of a round two-sphere in the above
form.

In 2d Riemann curvature is specified by a single number, and has essentially the
same information as the Ricci scalar. In the conformally flat metric that is

R = 2e−2ϕ∂∂̄ϕ . (4.126)

– Upon a Weyl transformation therefore, ANY 2d surface has a flat metric.

– In 2d Einstein tensor vanishes and hence 2d Einstein gravity is ill-defined.

– Orientibility: Any 2d surface can be embedded in 3d flat space and using the
embedding one can easily define an orientation on the 2d surface, especially if the
surface is periodic in one or two directions.

– Topology: Given the metric, the manifold may admit various global structures
and topologies: the manifold can be compact, have a finite volume and no bound-
ary; or non-compact has boundary and/or infinite volume.

– The topological information of 2d manifolds are defined by their genus and number
of boundaries.
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– The Euler character,

χ ≡ 1

2π

∫
d2z
√
gR ,

classifies the geometries. Genus g = 1−(χ+b)/2, where b is number of boundaries,
defines number of handles.

II Exercise 4.81: Show that χ does not change under Weyl scaling.

– For a sphere χ is 2, for a torus it is zero. Higher genus surfaces should hence come
from (uniformly) negative curved surfaces upon orbifolding, explicitly, a torus is
R2/Z2 and higher g are H2/Γ.

• If it were not for global issues, it would have been enough to study 2d CFTs on R2 or
on a part of R2 (if we have boundary).

II Exercise 4.82: Linear dilaton theory: Consider an N scalar model with the
action

S =
1

4π

∫
Σ

d2z (∂ϕa∂̄ϕa + V aϕa R) , (4.127)

where V a is ia constant given N-vector and R is the curvature of the 2d surface Σ.
I. Quantize the theory and compute its spectrum.
II. Compute energy momentum T of this theory.
III. Compute the central charge of the theory and show that it is c = N + 6VaV

a.
Hint: The last term may be simplified recalling (4.126).

4.10.2 Different 2d tori

• A 2d Torus can be obtained from an R2 via identification of the two independent
directions.

• The directions over which we make the identification can be orthogonal or not. Without
loss of generality, one can choose one of the identification directions as x1 axis (real
axis) with radius R1, and then other one will be specified by a complex number τR1,
where τ is a complex number, such that R2 = |τR1| and its angle with x1 axis is α.
The volume (area) of the torus is hence 4π2R1R2 sinα = (2πR1)

2Imτ .

• Any torus of given R1 or area is then specified by a complex number τ and its metric
is given as

ds2 = R2
1|dx+ τdy|2 , x ≡ x+ 2π , y ≡ y + 2π , τ =

R2

R1

eiα . (4.128)

• τ is usually called modular parameter, or shape parameter or complex structure
parameter of the torus.

• Due to topological obstruction resulting from periodicity of the axes not all tori with
any given τ can be related to each other by a rotation in y axis. The question is which
tori are inequivalent.
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• The above coordinate frame, specifies a lattice where a generic point on it is given by
m + nτ, m, n ∈ Z. A torus of the same shape and same area is formed if instead of
(0, 1) and (1, 0) points, the identification is done along (m+nτ) and (p+ qτ). In order
this torus to have the same area as before we need to require mq − np = 1. The new
torus obtained in this way will hence have

τ ′ =
m+ nτ

p+ qτ
, mq − np = 1 ,m, n, p, q ∈ Z . (4.129)

• The tori whose modular parameters are related by an element of the modular trans-
formation group PSL(2,Z) = SL(2,Z)/Z2 (the extra Z2 changes sign of all integers
m,n, p, q) are hence equivalent.

• The space of all possible complex numbers τ which upon an SL(2,Z) transformation
covers the whole 2d plane is called fundamental domain.

II Exercise 4.83: Draw the fundamental domain.

• Each point in the fundamental domain will hence specify an inequivalent torus.

4.10.3 Partition function of 2d CFT on torus

NOTE: The arguments in section are taken from the paper F. Loran, M.M.Sh-J, M.
Vincon,, JHEP 1101 (2011) 110, arXiv:1010.3561.

• Consider a generic 2d CFT with central charge c and the Virasoro algebra

[Ln, Lm] = (n−m)Lm+n +
c

12
n3δm+n [L̄n, L̄m] = (n−m)L̄m+n +

c̄

12
n3δm+n

NOTE: The above algebra is written for conformal generators on the cylinder (and
not the plane). That is, we are working with

Ln = Lcyl
n = Lplane

n − c

24
. (4.130)

• A few words on non-zero temperature QFT at equilibrium.

– There are different ways of describing a non-zero temperature QFT at equilibrium,
a standard way is to consider the Euclidean version of the QFT and compactify
the Euclidean time direction on a circle of radius β.

– Partition function of the theory may be computed using path integral in Hamil-
tonian formulation:

ZQFT (β) = Tr
(
ei

∫
Hdt
)

= Tr
(
e−2πβHEucl.

)
, (4.131)

where the Tr is over all physical states in the Hilbert space. In writing the second
line, we have assumed that 1) the theory is in equilibrium and 2) the partition
functions of the Minkowski and Euclidean theories are the same.
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– Had we other conserved charges in the system like Qi one can compute partition
function of the theory over the subset of the Hilbert space with states of a given
Qi. As is standard practice in stat.mech. systems, one may then compute the
partition function in this sector by adding Qi to the Hamiltonian with a chemical
potential µi while still taking the trace over all states in physical Hilbert space:

ZQFT (β;µi) = Tr
(
e−2πβHEucl.+2π

∑
i µiQi

)
, (4.132)

the factor of 2π is just by convention.

• To heat up a given 2d CFT on cylinder, we should hence compactify the time direction,
which is along the axes of the cylinder on a circle. This of course puts the CFT on a
torus. That is, a 2d CFT on the torus is nothing but a 2d CFT at non-zero temperature.

• We compute the partition function at a given temperature and a given chemical poten-
tial for the angular momentum, conjugate to Hamiltonian E and angular momentum
J . Instead, one may consider L0, L̄0 as sum and difference of E and J .

• The partition function will hence depend on temperature inverse β and the angular
momentum chemical potential, say ω. These are basically the radii of the two cycles
of the torus.

• At a more technical level this partition function, being the partition function of a CFT,
should only depend on the shape parameters and not size parameters of the torus.
That is, partition function should be a function of the modular parameter τ .

• Therefore, partition function of the above theory on a torus with modular parameter
τ is

Z(τ, τ̄) = Tr
(
e2πiτL0 e−2πiτ̄ L̄0

)
(4.133)

where the Tr is over all states in the Fock space of the theory, it includes summation
over the primaries as well as the states in their Verma modules, and τ̄ = τ ∗.

• Recalling that L0 and L̄0 are essentially Hamiltonians of the left (holomorphic) and
right (anti-holomorphic) sectors of 2d CFT on the torus, the form of partition func-
tion is that of a non-zero temperature QFT, with left and right temperatures,
respectively TL and TR, where

βL ≡ 1/TL = −2πiτ , βR ≡ 1/TR = +2πiτ̄ , (4.134)

NOTE: The above temperatures are not real-valued. However, there is a “physical” real
temperature associated with total radial Hamiltonian L0+L̄0. This physical temperature
T is hence

T =
1

β
, β = βL + βR , (4.135)

II Exercise 4.84: Investigate and work out the above.

• For a unitary theory, which we assume here, the trace is over all the states and since
all states have a positive norm their contribution add up. (Formally, for a non-unitary
theory the positive norm states contribution is subtracted from the negative norm state
contributions.)
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• Partition function Z(τ, τ̄) is expected to be invariant under PSL(2,Z) modular trans-
formations. This is due to the fact that a torus is defined up to modular transforma-
tions, i.e.

Z(τ ′, τ̄ ′) = Z(τ, τ̄) , τ ′ =
aτ + b

cτ + d
, τ̄ ′ = τ ′∗ ,

(
a b
c d

)
∈ PSL(2,Z) . (4.136)

• Let’s denote the eigenvalues of L0 and L̄0 (Hamiltonians on the torus) by ∆, ∆̄. We
argued in the previous section that unitarity requires eigenvalues of Lplane

0 , denoted by
conformal weight h, to be positive. Therefore,

∆ ≡ h− c

24
≥ − c

24
, ∆̄ ≡ h̄− c̄

24
≥ − c̄

24
. (4.137)

NOTE: ∆ is eigenvalue of L0 on cylinder, while h is eigenvalue of L0 on the plane.

• Noting that all states in the Fock space of a unitary CFT have definite h, h̄, the Tr is
replaced with a sum over h, h̄:

Z(τ, τ̄) ≡
∑
h,h̄

ρ(h, h̄) e2πiτ(h−c/24) e−2πiτ̄(h̄−c̄/24) (4.138)

where ρ(h, h̄) is density of states with a given h, h̄. Note that this includes both
primaries and their descendents.

NOTE: To write the above, Unitarity has been assumed, assuming that ρ is positive
definite. Explicitly, if we dealt with a non-unitary theory we would not have been able
to extract density of all states, but just the difference between the positive norm and
negative norma densities.

NOTE: In (4.138) we have also assumed that L0, L̄0 have a discrete spectrum.

• Our aim is to use modular invariance (4.136) and compute the density of states ρ(h, h̄).

• To compute ρ we introduce

q = e2πiτ , q̄ = e−2πiτ̄ , (4.139)

and treat τ and τ̄ and, hence q and q̄, as independent complex variables.

• Next, use the contour integrals over q, q̄ to compute ρ:

ρ(h, h̄) =
1

(2πi)2

∫
dq

qh+1

dq̄

q̄h̄+1
Z(q, q̄)qc/24q̄c̄/24

=
1

(2πi)2

∫
dτdτ̄ Z(τ, τ̄)e−2πiτ(h−c/24) e2πiτ̄(h̄−c̄/24) .

(4.140)

NOTE: To compute density of states ρ(h, h̄) using the contour integrals we have as-
sumed that partition function is analytic function of a power of q, q̄. This latter in fact
follows from the discreteness of the spectrum condition we assumed.
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• We now use modular invariance (4.136) to constrain and compute ρ. Let us consider
the S-transformation

τ → −1

τ
q → q̂ = e−2πi/τ .

We then learn that∑
h,h̄

ρ(h, h̄)qh−c/24q̄h̄−c̄/24 =
∑
h′,h̄′

ρ(h′, h̄′)q̂h
′−c/24 ˆ̄q

h̄′−c̄/24
(4.141)

• One can then use (4.141) to obtain a recursion relation for ρ

ρ(h, h̄) =
∑
h′,h̄′

ρ(h′, h̄′) I(∆,∆′)I(∆̄, ∆̄′) , (4.142)

where

I(∆,∆′) = −
∫ i∞(+)

0

dτ e−2πi(∆τ−∆′
τ
) = (−i)

∫ 0(+)

−∞

dτ

τ 2
e−2π(∆τ+∆′

τ
) (4.143)

where ∆ and h are related as in (4.137).

• The above integral is a standard integral representation of Bessel function. Assuming
∆ ≥ 0, we have:

I(∆,∆′) =


−2π

√
∆′

∆
I1(4π

√
∆∆′) , ∆′ > 0

2π
√

|∆′|
∆

J1(4π
√
∆|∆′|) , ∆′ < 0

(4.144)

NOTE: Bessel functions of I and J type are related to each other, roughly as I(iz) ∼
J(z).

• Let us assume that ∆, ∆̄ are positive, while ∆′, ∆̄′ over which we have sums can be
positive and negative. Therefore, in the RHS of (4.142) we will have four terms:

ρ(h, h̄) = (2π)2
∑

∆′≤0,∆̄′≤0

ρ(∆′, ∆̄′)
|∆′|
U

I1(4πU)
|∆̄′|
V

I1(4πV )

− (2π)2
∑

∆′≤0,∆̄′>0

ρ(∆′, ∆̄′)
|∆′|
U

I1(4πU)
|∆̄′|
V

J1(4πV )

− (2π)2
∑

∆′>0,∆̄′≤0

ρ(∆′, ∆̄′)
|∆′|
U

J1(4πU)
|∆̄′|
V

I1(4πV )

+ (2π)2
∑

∆′>0,∆̄′>0

ρ(∆′, ∆̄′)
|∆′|
U

J1(4πU)
|∆̄′|
V

J1(4πV ) (4.145)

where

U ≡
√
|∆′|∆ =

√
|h′ − c/24|(h̄− c/24) ,

V ≡
√
|∆̄′|∆̄ =

√
|h̄′ − c̄/24|(h̄− c̄/24) . (4.146)

NOTE: We are already assuming that ∆ = h− c/24 ≥ 0, ∆̄ = h̄− c̄/24 ≥ 0.
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• Recalling that for large z ≫ 1

J1(z) ∼
√

2

πz
sin(

π

4
− z) , I1(z) ∼

√
1

2πz
ez , (4.147)

the last three lines in (4.145)is much smaller than the first line which involves Bessel-I
function.

NOTE: The sums in last three lines involve infinite number of terms (e.g. recall
the states in the Verma module. Nonetheless, all these terms come with the “fast”
oscillatory term of Bessel-J and hence cancel off each other. Although we cannot show
that they are equal to zero for any given 2d CFT with an arbitrary spectrum, one can
safely ignore them up to exponentially suppressed terms compared to the first line.

• Therefore, up to exponentially suppressed corrections,

ρ(∆, ∆̄) = (2π)2
∑

∆′≤0,∆̄′≤0

ρ(∆′, ∆̄′)
|∆′|
U

I1(4πU)
|∆̄′|
V

I1(4πV ) (4.148)

• Finally, let us recall the exponential behavior of Bessel-I cf. (4.147) and the assumption
that our theory has a discrete spectrum. Therefore, the term with lowest ∆′, ∆̄′, which
has largest U, V values for given ∆, ∆̄, will have the largest contribution to the above
sum; the other terms will be exponentially suppressed compared to this term. That is,
up to exponentially suppressed terms:

ρ(∆, ∆̄) =

(
π2

3

)2

ρ0 ĉ
I1(S0)

S0

· ˆ̄c I1(S̄0)

S̄0

. (4.149)

In the above

– ρ0 = ρ(∆0, ∆̄0) is the density of states in “ground state”, the vacuum state, which
comes with conformal weights h0 = ∆0 +

c
24
, h̄0 = ∆̄ + c̄

24
. ρ0 may be taken to be

one.

– ĉ, ˆ̄c are effective central charges are equal to

ĉ = c− 24∆0 , ˆ̄c = c̄− 24∆̄0 . (4.150)

– expression S0 and S̄0 are

S0 = 2π

√
ĉ

6
(∆− c

24
) , S̄0 = 2π

√
ˆ̄c

6
(∆̄− c̄

24
) (4.151)

NOTE: Equation (4.149) provides density of states for modes with positive ∆, ∆̄.

• As we see up to exponentially suppressed terms the density of states is product of the
contribution from left movers and that of right movers. Note that, this is not the case
in general, before ignoring the exponentially suppressed terms in (4.145) and (4.148).
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• One may insert the above density of states in (4.138) and compute the partition func-
tion Z.

II Exercise 4.85: Show that the partition function will be “holomorphically factor-
ized”, i.e. it takes the form of

Z(τ, τ̄) = Z(τ) · Z̄(τ̄) , (4.152)

where

Z(τ) =
1

12

(
e

πiĉ
12τ − 1

)
, Z̄(τ̄) =

1

12

(
e−

πiˆ̄c
12τ̄ − 1

)
. (4.153)

NOTE: The above expressions hence give the partition function of the theory up to
exponentially suppressed corrections. Note that in computing this partition function we
only used unitarity, discreteness of spectrum and modular invariance. This
is the miracle of conformal symmetry, no details of the theory and its interactions has
been used.

• One may take logarithm of the density of states to obtain the entropy associated with
the 2d CFT on the torus. Assuming that S0 ≫ 1, S̄0 ≫ 1, in the leading order we
obtain

SCardy = S0 + S̄0 = S0 = 2π

(√
ĉ

6
(h− c

24
) +

√
ˆ̄c

6
(h̄− c̄

24
)

)
(4.154)

where ĉ, ˆ̄c are effective central charges defined in (4.150).

NOTE: Eq.(4.154) is the celebrated Cardy formula for the entropy of any 2d CFT.
This is very remarkable, as it only depends on the effective central charge and the
energy level the system is excited to, and not on the details of the theory.

II Exercise 4.86: Using (4.149) and the explicit form of the Bessel-I function,
compute subdominant contribution to the entropy.

II Exercise 4.87: Using the expression for the partition function (4.152) compute
free energy and the entropy of the 2d CFT system as a function of temperatures TL, TR
cf. (4.134), using standard thermodynamical equations and show that

S =
π2

3
(ĉTL + ˆ̄cTR) , (4.155)

where TL, TR are defined in (4.134).
The entropy given in (4.155) is hence the entropy computed in canonical formulation
while the one computed in previous exercise is the entropy in the micro-canonical
formulation. Compare the two.

4.11 2d CFT on a generic 2d surface and trace anomaly

• As argued any 2d surface, up to possibly topological obstructions, can be brought to
2d flat space. As such, we mainly focused on the 2d CFT’s on (locally) flat 2d spaces.
The question we pose in this section is whether the conformal map (i.e. Weyl scaling)
which brings a generic non-flat surface to a flat one is anomalous or not.
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• To address this question we recall (cf. discussions of section 4.3) that invariance under
rigid scaling leads to tracelessness of the energy-momentum tensor, i.e. Tz̄z = Tzz̄ = 0.
Then the question is

δ⟨Tz̄z⟩ =
?

0 . (4.156)

With the above of course we mean δ⟨Tz̄zX⟩ =
?
0 for any arbitrary insertion X.

• To answer this question we take two steps:

i. Consider a map from flat space to an arbitrary curved space:

w → z = z(w) where dwdw̄ → | dz
dw
|2dwdw̄ . (4.157)

and compute δw⟨Tz̄z⟩.
ii. Assume translation invariance to be non-anomalous, use (4.18) and (4.20) to relate

Tz̄z to T (z).

• To implement the first step we note that Tz̄z =
1
4π

δS
δgaa

and that

δw⟨Tz̄z(z)⟩ = δw

(∫
DΦe−S[Φ] Tz̄z

)
=

∫
DΦe−S[Φ]

(∫
d2w
√
g Tz̄zδwg

abTab

)
=

1

2π

∫
d2w⟨Tz̄zTw̄w⟩Ω(w, w̄) . (4.158)

where in the last line we focused on the maps (4.157) for which δwg
ab = Ω(w, w̄)δab.

• We then use translation invariance (the assumption in step ii. above)

∂Tz̄z = ∂̄T (z) ,

the standard T (z)T (w) OPE (4.45), that w-plane is flat space for which ⟨T (w)⟩ = 0,
and (4.126) to arrive at

⟨Tz̄z⟩ = −
c

12
R , (4.159)

where R is the curvature of the 2d surface spanned by z-coordinates.

II Exercise 4.88: Fill out possible computational gaps in the above.

• One could have repeated the same analysis for Tzz̄ to find

⟨Tzz̄⟩ = −
c̄

12
R . (4.160)

• As we see, IF c = c̄ then the above two relations are consistent with rotation sym-
metry being non-anomalous. However, if c̄ ̸= c then the rotation and hence Poincaré
symmetry is also anomalous.

• Moreover, the above shows that 2d CFT’s on flat space the trace anomaly vanishes.
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• Eqs.(4.159) and (4.160) imply that 2d conformal symmetry can be gauged iff c = c̄ =
0, and that, 2d gravity (which may be viewed as theory where Poincaré symmetry is
gauged) is well-defined only if c = c̄; if c̄ ̸= c we have 2d gravitational anomaly.

• The above gives another interpretation for the central charge c: It appears in the trace
anomaly (Weyl scaling anomaly) relation.

• Noting that in 2d the only diff. invariant object of dimension of two is the Ricci scalar,
and that the anomaly relation should be generally invariant one could have guessed
that ⟨Tzz̄⟩ ∝ R. The coefficient, which is a property of the theory in question, is −c/12.
We will return to this point later on when we discuss 4d CFT’s.

• The string worldsheet theory is nothing but a 2d gravity theory which should also
exhibit conformal invariance. This theory should be well-defined on any 2d surface
with positive or negative curvature. Therefore, noting that being a 2d gravity the 2d
Poincaré symmetry is gauged and hence for this theory to make sense we should require
the trace anomaly to be zero. That is, we should require c = c̄ = 0. This will lead to
standard critical strings and fixes the dimension, which recalling contribution of the
worldsheet ghosts to the central charge, this is 26 dimensions for bosonic strings and
10 dmensions for superstrings.

II Exercise 4.89: Compute ⟨Tz̄z(z, z̄)T (w)⟩, ⟨Tz̄z(z, z̄)T (w)T (u)⟩ and ⟨Tzz̄(z, z̄)T̄ (w̄)T̄ (ū)⟩.
The anomaly expression may also be recast in terms of the last two.

4.12 The c-theorem

• As discussed in the case of free multi boson (or multi fermion) theory, and also as is
apparent from the Cardy formula (4.155) the central charge is a measure of number of
degrees of freedom of a 2d CFT.

• We know that CFT’s may be viewed as usual QFT’s at their RG fixed point. This is
more robust for the 2d case where it is proven that (cf. discussions of section 3.6.1)
upon some reasonable conditions scale invariance (which is recovered at the RG fixed
point) implies conformal invariance.

• Conversely, one may view a generic 2d QFT as a deformation around a 2d CFT. This
deformation can be by relevant, marginal and irrelevant local operators.

• Zamolodchikov’s c-theorem in 2d QFT’s states that

On the space of QFTs, there exists a functional c(µ;λi), µ being the RG scale and λi
are couplings. Under RG flow to IR the c-function decreases monotonically and at
RG fixed points, where the QFT reduces to a CFT, c-function evaluated at this fixed

point becomes the central charge of the corresponding CFT.

• The 2d c-theorem was proved in
A. B. Zamolodchikov, ‘‘Irreversibility of the Flux of the Renormalization
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Group in a 2D Field Theory,’’ JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp.

Teor. Fiz. 43 (1986) 565].

NOTE: Once at a fixed point in the parameter space specified by couplings λ∗i , the
value of c-function does not depend on the energy scale µ, is only a function of the
values of the couplings at the fixed point.

• The c-function represents the number of degrees of freedom in the QFT, or the CFT
arising in the fixed points.

• We may start from a CFT at UV, deform it by some relevant or marginal operator to
arrive at a different CFT, with a different central charge in IR. Then, the c-function
interpolates between the two CFT’s. In this case c-theorem states that cIR < cUV .
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5 4d CFT’s

In sections 2 and 3 we discussed conformal group in general dimensions, the conditions
coming from unitarity of representations, general structure of two, three, four and higher
point functions, and the Ward identities associated with conformal symmetry. In this section
we discuss some other aspects of 4d CFT’s. However, let us first give a brief review of our
earlier discussions. Then, give a motivation for 4d CFT’s which are generically of the form
of Yang-Mills gauge theories, and are also usually supersymmetric theories.

5.1 Review of our earlier results

• Conformal algebra in 4d is SO(4, 2) for Lorentzian signature and SO(5, 1) for Eu-
clidean.

• Its unitary reps are labelled by the scaling dimension ∆ and their spin.

• The Lagrangian of scale invariant QFT’s on R4 cannot involve any dimensionful cou-
pling/parameter. In particular, it should only involve massless states.

• In the Euclidean signature, CFT’s on R4 in the radial quantization are related to the
same theory on Rτ×S3 with translation along τ direction related to radial Hamiltonian.

NOTE: Recall that on R×S3 a CFT theory can involve a mass parameter, a conformal
mass term, cf. Exercise 3.3.

• The conformal representations are specified by (quasi)primary states which transform
as (3.15), if we use operator language. Alternatively, one may use operator-state cor-
respondence and discuss about primary states. Primary states are states with given
spin and scaling dimension ∆ which are killed by the action of special conformal trans-
formations generator Kµ. Explicitly,

Kµ|Primary⟩ = 0 .

• The other states in the same conformal multiplet are then constructed by the action
of Pµ and other SO(4, 2) generators on the primary states. That is, we know the full
spectrum of a CFT if we know the spectrum of its primaries. These states which again
have definite scaling dimension and spin are called descendent of the primary. If a
descendent is constructed by ℓ number of Pµ’s acting upon a primary, we have a level
ℓ descendent.

• Unitarity bounds. Unitarity of representation imposes bounds on the scaling dimen-
sion of the primaries. For example, demanding all primaries to have positive-definite
norm leads to ∆ ≥ 0.

• Unitarity, however, also demands all level ℓ descendents should have positive norm.
In four dimensions this leads to the following spin dependent unitarity bounds and
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conditions:

∆ ≥ 1 for primary scalar fields,

∆ ≥ 3/2 for primary spin 1/2 fields,

∆ ≥ 3 for primary gauge field (currents), (5.1)

∆ ≥ 4 for symmetric traceless tensor (like the energy momentum tensor),

∆ ≥ l + 2 for primary spin l fields.

NOTE: Free massless field theories which are of course CFT’s, saturate these bounds.

NOTE: For vector case, the primary rep. must also be divergence free. This implies
that spin one primary states can be viewed as currents coupled to gauge fields.

• The spacetime dependence of two and three point functions are completely fixed. For
scalar (spin zero) operators, that is as given in (3.59) and (3.60).

II Exercise 5.1: As in the 2d case, cf. discussions of section 4.9.1, the three
point function of any three operators, primary or descendent, can be recast in terms of
three point function of primaries. If the “vertex” function of three primary operators
Oi, Oj, Ok is denoted by Cp

ijk. Compute the vertex function of three generic operators.
Note that 4d conformal multiplets has a much simpler structure than the 2d Verma
modules.

• The spacetime dependence of four and higher point functions is specified up to depen-
dence on conformal cross-ratios, e.g. as in (3.61) for scalar spin-zero operators.

II Exercise 5.2: As in the 2d case, cf. discussions of section 4.9.2, show that
one may use OPE of primary operators to reduce the four point function of primary
operators to a sum over products of two C12pC34p for primaries, plus a kinematical
information encoded in conformal blocks, as in (4.122) and (4.123).

5.2 Examples of 4d CFTs

• In the previous subsection we reviewed basic properties of 4d CFT’s mainly on R4.
However, one would like to know if there are non-trivial (interacting) 4d QFT’s which
exhibit conformal invariance, both at classical level and quantum mechanically.

• Scale invariance for a perturbative 4d QFT at classical level implies that we should
only consider massless fields with deformations by marginal local Lorentz invariant
operators. These will come with dimensionless couplings λmarg

i .

• In general the β-function of these couplings is non-zero and hence scale invariance will
be lost at quantum level; CFT’s can only appear in RG fixed points.

• At these fixed points, however, the theory may not be/remain perturbative, or may
not necessarily admit a simple Lagrangian description.

NOTE: At fixed points the theory is scale invariant and not necessarily conformal
invariant. Recall discussions of section 3.6.1.
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• A candidate 4d CFT which admits Lagrangian description may be sought for in the
family of Yang-Mills gauge theories at their fixed points. In fact, all known examples
of (perturbatively accessible) 4d CFTs are in the family of gauge theories.

• Let us start with 4d SU(Nc) Yang-Mills theory plus Nf massless Dirac fermion flavors
in fundamental rep. of SU(Nc). This is a QCD-like theory.

• In the UV, the theory can be Asymptotic Free (AF) if the β-function of the gauge
coupling is negative. If so, the theory has a perturbatively accessible UV-fixed point.
At this fixed point, while a CFT, the theory is free and hence not so interesting.

• The question is then, if this theory has also non-trivial IR fixed points. To address
this question we should study zeros of the β-function which is

β(g) =
∑
ℓ=1

βℓg
2ℓ+1 , βℓ =

ℓ∑
m=0

AℓmN
m
c N

ℓ−m
f , (5.2)

where βℓ is the ℓ-loop β-function and Aℓm are some numeric coefficients which may
have dependence on Nc with negative powers of Nc and are computable by explicit
loop calculations. The one and two loop results are

A11 = −
1

16π2

11

3
, A10 =

1

16π2

2

3
,

A22 = −
1

16π2

34

3
, A21 = +

1

16π2
(
10

3
+
N2

c − 1

N2
c

) , A20 = 0 . (5.3)

II Exercise 5.3: Show that β-function can be written as

β(λ) = 2
∑
ℓ=1

ℓ∑
m=0

Aℓm

(
Nf

Nc

)ℓ−m

λℓ+1 , (5.4)

where λ = g2Nc is the ’t Hooft coupling.
NOTE: ’t Hooft coupling provides a particularly nice expansion for large Nc, or when
Nf/Nc ≪ 1. Moreover, in this limit Aℓm coefficients become only some numbers and
their Nc dependence drops out.

• Therefore, if
β1 ≤ 0 ⇒ Nc ≥ 2Nf/11 (5.5)

and hence the theory is AF.

• For higher loops we know that

Aℓℓ < 0 , Aℓ0 ≥ 0. (5.6)

Therefore, for large Nc with finite Nf , βℓ will be dominated by the N ℓ
c term and

always remains negative, with no zeros, while for large Nf with finite Nc, β-function
is dominated by the flavor terms and is hence always positive.

• Depending on the values of Nf , Nc, higher loop contributions to β-function may become
positive and can in principle dominate over the one-loop result. This brings up the
possibility of β-function having zeros.
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• Let us e.g. focus up to two loop results.

– To have asymptotic freedom we need β1 ≤ 0,

– to have (IR) fixed points we need β2 ≥ 0, moreover to remain perturbative we
need |β1/β2| . 1.

• It is indeed possible to find Nf , Nc which satisfy the above conditions and hence we
have a perturbative IR fixed point. These values of Nf and Nc provide a conformal
window. This fixed point is usually called Banks-Zaks fixed point.

II Exercise 5.4: Do we have an IR fixed point for any given value of Nc? If yes,
assuming we can trust the perturbative β-function result (5.2), compute the range for
Nf which specifies the conformal window in terms of Aℓm coefficients and the value of
the coupling at the fixed point g∗.

II Exercise 5.5: Compute the value of the YM coupling g∗ and the corresponding ’t
Hooft coupling λ∗ at the IR fixed point.

II Exercise 5.6: Does having positive β2 such that it can cancel off the one loop
result destroy asymptotic freedom of the theory?!

• Let us summarize the necessary conditions for existence and the possibility to arriving
at Banks-Zaks fixed point:

– Negative β1: In order to define any QFT we need to start from a weakly coupled
fixed point. Here we choose to start in the UV. As such, and to have a UV fixed
point, we need to have an asymptotic free theory which is implied by β1 < 0
condition.

– Positive β2: This is the necessary (but not sufficient) condition for having another
(IR) fixed point.

– |β2/β1| ≥ 1: This condition is needed for two reasons: 1) To have a trustable
perturbative loop expansion, upon which our analysis is based and, 2) To make
sure that higher loop effects can be safely ignored. This latter of course needs
further investigations.

– IR fixed point should be attractor. This latter is obviously needed if we want the
RG flow to naturally land us on the IR fixed point, starting with relevant deforma-
tions in the UV. This condition implies that at the IR, Banks-Zaks, fixed point we
should not have any relevant operator; deformations by relevant operators (by
definition) takes us away from the fixed point and make the fixed point unstable.

• Some side remarks:

– A confining theory just by definition cannot be conformal, because confinement
means creation of a mass gap. Real QCD does not hence have a Banks-Zaks fixed
point.

– For QCD-like theory with Nc = 3, there are computations (mainly lattice gauge
theory results) indicating that the theory is confining with chiral symmetry break-
ing for 2 ≤ Nf ≤ 9, for 10 ≤ Nf ≤ 12 the theory is perhaps confining without
chiral symmetry breaking, and for 13 ≤ Nf ≤ 16 we have a conformal window.
For Nf > 16 the theory is not asymptotic free.
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NOTE: The above results are as of 2011 and to arrive at the above results one
may not simply use QCD perturbation theory, as the coupling may be large.

– For theories in the conformal window and at the IR fixed point global symmetry is
the same as the UV theory, which is U(Nf )×U(Nf ), each factor for one chirality
of fermions.

NOTE: For more references on the above see papers by Slava Rychkov and ref-
erences therein, may be found at his website:
https://sites.google.com/site/slavarychkov/.

– Note that in the conformal window and around the Banks-Zaks fixed point, we
are not necessarily claiming that the perturbative degrees of freedom of theory
are those of a gauge theory.

• One may ask if there are other 4d CFT’s besides the YM+Dirac fund. fermion theories
discussed above. The answer is of course positive. There are many more 4d CFT’s
which are mostly in the class of supersymmetric Yang-Mills theories. These are CFT’s
which have an action description.

• Superconformal gauge theories can come with various number of supersymmetries,
N = 1, 2, 4.

• In general, addition of SUSY imposes various cancelations in the loops and restricts
the higher loop contributions to the perturbative β-function e.g. for N = 1 β-function
is two loop exact, for N = 2 it is one-loop exact and for N = 4 β-function is simply
zero. This results are due to V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I.
Zakharov 1980’s, and known as NSVZ β-function .

• The one loop perturbative β-function of any YM gauge theory with Weyl fermions in
representation Rf of the gauge group and real scalars in representation Rs is:

β = − 1

16π2
g3

(
11

3
T (adj)− 2

3

∑
f

T (Rf )−
1

6

∑
s

T (Rs)

)
, (5.7)

where T (rep) is the index for the corresponding representation. For SU(Nc), T (adj) =
2Nc and T (fund) = 1.

• N = 4 theory is superconformal for any value of the gauge coupling, for any gauge
group. That is, the theory has a conformal fixed line.

• Note that N = 4 has 16 Poincaré supersymmetries, its smallest multiplet is the gauge
multiplet which is the only multiplet N = 4 supersymmetric Yang-Mills (SYM) is
comprised of. It consists of a gauge field, four chiral fermions and six real scalars,
all in the adjoint representation of the gauge group. (Note that there are eight real
propagating boson and eight propagating fermion d.o.f in each multiplet.)

II Exercise 5.7: Using the above information, that all the states in the same SUSY
multiplet should be in the same gauge group reps, and (5.7), show β-function of N = 4
vanishes.
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• N = 2 theories can be superconformal if the matter content is chosen such that the
β-function vanishes. Since the β-function is one-loop exact, we again have a conformal
fixed line, for any value of the coupling.

• Note that N = 2 has 8 Poincaré supersymmetries. The N = 2 SYM actions can consist
of vector (gauge) multiplet and hypermultiplets. An N = 2 vector multiplet consists
of a gauge field, two Weyl fermions and a complex scalar (4 + 4 bosonic+fermionic
propagating d.o.f) and a hypermultiplet contains two Weyl fermions and two complex
scalars (again 4 + 4 bosons+fermions). Hypermultiplets can be in the fundamental,
adjoint or other reps of the gauge group, while the fields in vector multiplet are all in
the adjoint.

II Exercise 5.8: Using (5.7), show that for an SU(Nc) theory with Nh hypermulti-
plets the perturbative β-function is

β = − 1

4π2
g3(Nc −X) , (5.8)

where X = NcNh if the hyper is in the adjoint rep, and X = Nh/2 if the hyper is in
fundamental rep.

• Therefore, β-function vanishes if Nh = 1 with adjoint hyper and with Nh = 2Nc for
fundamental hyper. For these values we have a fixed line over which the theory is
superconformal. With Nh larger than these values the theory is not asymptotic free.
NOTE: Nh = 1 with hyper in the adjoint is the same matter content of N = 4 theory.

• N = 1 theories too, can be superconformal for appropriate matter content. Recalling
that in N = 1 we have vector multiplets containing a gauge field and a gaugino (which is
a Weyl fermion) and chiral multiplets containing a chiral fermion and a complex scalar,
one may use (5.7) to see for which matter content β-function vanishes. Whenever this
happens we have a conformal fixed line.

II Exercise 5.9: For a general N = 1 SU(Nc) theory with Nadj chiral multiplets
in the adjoint and Nfund chiral fields in the fundamental, when does the β-function
vanish?

• Some side remarks,

– N = 4 SYM which is superconformal has Montonen-Olive S-duality symmetry.
N = 2 superconformal theories also enjoy S-duality.

– Almost all of the known superconformal field theories (SCFT’s) have a “gravity”
dual, within AdS/CFT correspondence. That is, there is a supergravity theory
with appropriate number of supersymmetries with an AdS5 vacuum solution. The
details of the supergravity theory is in one-to-one correspondence with the matter
content of the SCFT.

– N = 1, 2 theories which are asymptotic free (negative β-function ) can be confining
and therefore, when flowing to IR other light degrees of freedom (meson-like) state
can appear and hence change the behavior of the β-function (Arkani-Hamed &

Murayama ’1997). In particular, for N = 1 SQCD, with SU(Nc) gauge group
with Nf fundamental matter (i.e. Nf chiral multiplets and Nf anti-chirals), when

73



3Nc/2 ≤ Nf ≤ 3Nc we have a conformal window and the theory flows to a strongly
coupled CFT in the IR. (For Nf > 3Nc the theory is IR free and the theory is not
confining.)

– There are 4d SCFTs which are not YangMills theories, are always strongly cou-
pled and presumably do not admit a Lagrangian description. For example, the
TN , N = 3, 4, · · · which are N = 2 theories are in this class. Our handle on these
theories is usually through AdS/CFT correspondence.

5.3 4d Superconformal algebras

• As discussed most of the better studied 4d CFT’s (and also CFT’s in general d > 2)
are supersymmetric theories. SUSY brings protection of certain physical observables
against quantum loop corrections, like mass of SUSY mesons, monopoles in confining
theories and (perturbative) β-function .

• SUSY may be viewed in a quite algebraic view: Similarly to the conformal symme-
try, super-Poincaré algebra is an extension of Poincaré symmetry in any dimension
d. While conformal algebra is extension of Poincaré by dilation and special conformal
transformation, super-Poincaré algebra is extension of Poincaré by addition of spinorial
generators.

• There are many excellent review articles and books on super-Poincaré algebras, here
we just review the basics and the interested reader may consult those references. As
an example see, P. West, arxiv:hep-th/9805055.

5.3.1 Quick review of Super-Poincaré algebra

• Super-Poincaré algebra is constructed from Poincaré algebra upon addition of spinor
generators, supercharges QI

a and Q̄Iȧ, where I = 1, · · · ,N is the R-symmetry index
and a, ȧ = 1, 2 are respectively spinor indices and

Q̄Iȧ = (QI
a)

† .

• The super-Poincaré algebra is

{QI
a, Q

J
b } = ϵabZ

IJ , {Q̄Iȧ, Q̄Jḃ} = ϵȧḃZ
IJ ,

{QI
a, Q̄Jḃ} = 2iδIJ(σ

µ)aḃPµ , [P µ, QI
a] = 0 ,

[Lµν , QI
a] = (σµν)abQ

I
b , [Lµν , Q̄Iȧ] = (σ̄µν)ȧḃQ̄Iḃ ,

[RI
J , Q

K
a ] = ΓK

JQ
I
a , [R J

I , Q̄Kȧ] = −Γ J
K Q̄Iȧ ,

[RI
J , Lµν ] = 0 , [RI

J , Pµ] = 0 , (5.9)

where

– ZIJ = (ZIJ)† are the central extensions of the algebra, i.e.

[ZIJ , Anything] = 0

where “Anything” includes all Poincaré and spinorial generator;
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– RI
J are the R-symmetry group generators and (RI

J)
† = R J

I R-symmetry is an
internal symmetry acting on I, J indices and is U(N) for 4d super-Poincaré , i.e.
RI

J satisfy U(N) algebra commutation relations. QI
a besides being a spacetime

spinor (denoted by a index) is also a U(N) spinor denoted by I index.

– As as indicated by equations in the last line of (5.9), ΓI
J furnish an (adjoint)

representation of the R-symmetry group.

II Exercise 5.10: As indicated by the indices, central extensions ZIJ should be in
tensor representation of the R-symmetry group. Find [RI

J , ZKL].

• Number of real supercharges in 4d super-Poincaré is 4N. So 4d N-super-Poincaré has
4N spinor and 10 Poincaré , N2 R-symmetry generators. Moreover, there are possibly
central elements.

• In SUSY gauge theories the U(1) part of U(N) R-symmetry is generically anomalous
and hence the exact R-symmetry group is SU(N). For N = 1 case, the U(1) R-
symmetry reduces to a discrete Z2 subgroup, called R-parity.

• One may construct unitary irreps of super-Poincaré for any N. Let us here focus on
massless multiplets. If the lowest spin in a given massless multiplet is s, the highest
spin in the same supermultiplet can be s + N/2. (Intuition: supercharges carry spin
1/2 and states in the multiplet are constructed by action of supercharges on the lowest
spin state, until we hit zero. Due to antisymmetry of supercharges this will happen
with the maximum N/2 hits.)

• Conversely, in each multiplet there is a state which is killed by the action of half
(increasing-ladder operators) of supercharges. This state has the highest spin in the
multiplet and one can hence use this to name the multiplet. The highest spin state is
a chiral/BPS state.

• Therefore, the difference between the smallest and largest spins in a multiplet is less
than or equal to N/2.

• N = 1 massless multiplets are composed of states with spins s and s− 1/2.

• For the same reason as above, for N > 4 we do not have a supersymmetric gauge
theory. Moreover, N = 8 is the largest N one can have in 4d, if we want to avoid
multiplets with spins higher than 2.

• In the absence of central extensions ZIJ , 1/2 BPS states are all massless. Massive 1/2
BPS states can happen when central charge is non-zero; these are states with non-zero
central charge of ZIJ (not to be confused with central charge of a CFT.)

5.3.2 The 4d superconformal algebra commutation relations

• Superconformal algebras are in fact supersymmetric versions conformal algebra in any
dimension.
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• The super-algebra obtained from closure of super-Poincaré algebra after addition of
dilation and special conformal transformations is nothing but the superconformal al-
gebra.

• This will happen if for N-super-Poincaré we add 4N superconformal supercharges,
usually denoted by SIa, S̄

I
ȧ = (SIa)

† (of course together with the bosonic generators
of the conformal group). The new (anti)commutation relations of the superconformal
algebra are hence

{SIa, SJb} = ϵabZ̃IJ , {S̄I
ȧ , S̄

J
ḃ
} = ϵȧḃ(Z̃

†)IJ ,

{SIa, S̄
J
ḃ
} = −2i(σµ)aḃKµ ,

{QI
a, SJb} = 2δIJϵab D+δIJ(iσ

µν)abLµν + ϵabR
I
J ,

{Q̄Iȧ, SJb} = 0 , {QI
a, S̄

J
ḃ
} = 0 , (5.10)

[D,QI
a] = −

1

2
QI

a , [D,SIa] = +
1

2
SIa ,

[Kµ, QI
a] = (σµ)aḃS̄

I
ḃ
, [Kµ, Q̄Iȧ] = (σ̄µ)ȧbS̄Iḃ ,

[P µ, SIa] = (σµ)aḃQIḃ , [P µ, SI
ȧ ] = (σ̄µ)ȧbQ

I
b ,

[Lµν , SIa] = (σµν)abSIb , [Lµν , S̄I
ȧ ] = (σ̄µν)ȧḃS̄

I
ḃ
,

[R J
I , SKa] = Γ J

K SJa , [RI
J , S̄

K
ȧ ] = −ΓK

J S̄
I
ȧ ,

[RI
J , Kµ] = 0 , [RI

J , D] = 0 , (5.11)

• Therefore, the bosonic part of the superconformal algebra is so(4, 2)×u(N) ≃ su(2, 2)×
u(N) and there are 2 · 4N fermionic generators. 4d superconformal algebras are hence
usually denoted by su(2, 2|N). These are algebras with bosonic part su(2, 2) × GR

(which GR is u(1) for N = 1, su(2) × u(1) for N = 2 and, su(4) for N = 4. The
fermionic generators are in spinor representation of the conformal group SU(2, 2) as
well as the spinor representation of the R-symmetry group GR.

5.3.3 Some comments on representations of SU(2, 2|N)

• The representations here can be constructed using a combination of discussions we had
for conformal and super-Poincaré groups.

• Note that, as is seen from (5.11), action of Q’s on a state increases the conformal
weight by 1/2, while action of S’s decreases that by 1/2.

• Each superconformal multiplet is hence built upon primary states (which have the
lowest conformal weight in the multiplet). These are states killed by the action of Kµ.

• As in supersymmetry multiplets, if there are states which are killed by some of super-
generators, we then have BPS states. If the number of real supercharges killing a state
is q, the state is called q/(8N) BPS.

• So, there could be states which are primary and BPS. The superconformal multiplets
which are built upon these states are called short or atypical states/multiplets.
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• Conformal multiplets based on non-BPS primary states are called long or typical mul-
tiplets.

• The vacuum state is the only state which preserves all the possible supersymmetries,
it is killed by both Q’s and S’s.

• The next possible BPS multiplet is a half-BPS chiral primary multiplet, a multiplet
which is based on supersymmetric chiral and conformal primary state.

• The matter content of N-superconformal gauge theories discussed in the previous sec-
tion also form a short multiplet (in fact a chiral primary multiplet) of the corresponding
superconformal algebra.

• While 1/2-BPS chiral-primary states (and of course not the multiplet) are necessarily
spacetime scalars, they can carry non-trivial representation of the R-symmetry group.
The conformal weight of these states are hence completely determined by their R-
symmetry representation, which can be encoded by the R-charge of the state.

• The scaling dimension of chiral primary states, and hence all the states in the same mul-
tiplet (by the virtue of superconformal algebra) is protected, i.e. the scaling dimension
of chiral primary states does not receive any perturbative (and in fact non-perturbative)
corrections.

5.4 The central charges, trace anomaly and 4d c-theorem

• As we discussed in section 4, the 2d conformal algebra admits extension by central
charge. Although the 2d Virasoro generators have the geometric interpretation as gen-
erators of conformal transformations (all meromorphic functions), the central charges
c, c̄ do not have geometric interpretations; they are properties of the conformal field
theory.

• In 2d we gave two different ways to specify the central charge for a given theory:

I. Using OPE of two energy-momentum tensors:

z4⟨T (z)T (0)⟩ = c/2 , z̄4⟨T̄ (z̄)T̄ (0)⟩ = c̄/2.

II. Using the expression for the trace anomaly (4.159):

⟨Tz̄z⟩ = −
1

12
cR , ⟨Tzz̄⟩ = −

1

12
c̄R ,

where R is the Ricci curvature of the 2d surface the CFT is defined on.

• One may extend the above two notions of the central charge to higher dimensions.

• In higher dimensions, though, the central charge will not appear as the central extension
of the corresponding conformal algebra so(d, 2).
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5.4.1 Stress tensor central charge cT

• Stress tensor central charge cT, for a d dimensional CFT is defined as,

⟨Tµν(x)Tαβ(0)⟩ =
cT
2

S2
d

1

|x|2d
Mµναβ (5.12)

where Sd = 2πd/2Γ(d/2) is the volume of unit radius Sd−1 and we assumed ⟨Tµν⟩ = 0.
NOTE: With the above definition cT = c in the 2d case, once we recall that in the 2d
case S2 = 2π and that we “redefined” the energy momentum tensor from the canonical
one Tµν = − 2√

det g
δS
δgµν , by a factor of 2π ( cf. the comment below (4.26)).

II Exercise 5.11: Argue that Mµναβ is of the form

Mµναβ = IµαIνβ + IµβIνα −
2

d
ηµνηαβ , Iµν = ηµν −

2xµxν
x2

. (5.13)

II Exercise 5.12: Show that for tensor Iµν(x) defined above,

Tr(Iµν) = d− 2 , I2µν = ηµν , det Iµν = −1 ,

Iµα(x)Iαβ(x− y)Iβν(y) = Iµν(x
′ − y′) , x′µ =

xµ

x2
. (5.14)

Moreover, show that

MµναβMαβρσ = 2

(
ηµαηνβ + ηµβηνα −

2

d
ηµνηαβ

)
. (5.15)

For more properties of Iµν tensor see [arXiv:hep-th/9307010].

• For free CFT with Ns real scalars, Nf Weyl fermions, and Nv gauge fields, in four di-
mensions [H.Osborn, A.Petkou, Annals Phys.231, 311 (1994), hep-th/9307010]

cT =
4

3
Ns + 4Nf + 16Nv (5.16)

II Exercise 5.13: Verify the above. To do so, start with a free theory bosonic theory
with Ns number of fields,

S = −1

2

∫
ddx (∂ϕ)2 , ⟨ϕ(x)ϕ(0)⟩ = 1

(d− 2)Sd

1

|x|d−2
. (5.17)

I. Write down the appropriate expression for its energy-momentum tensor, which is
traceless on-shell, i.e.

Tµν = ∂µϕ∂νϕ−
1

4(d− 1)
((d− 2)∂µ∂νϕ+ ηµν�)ϕ2 (5.18)

II. Compute the VEV of two energy-momentum tensors using (5.17).
III. For massless d-dimensional Dirac fermions, first show that the appropriate energy
momentum tensor is

Tµν = ψ̄(γµ
←→
∂ ν + γν

←→
∂ µ)ψ , ⟨ψ(x)ψ(0)⟩ = 1

Sd

γ · x
|x|d

. (5.19)
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and then compute cT .
IV. Only in four dimensions, free vector gauge fields also have a traceless stress tensor
and form free CFT. Compute contribution of gauge fields to cT starting from their
energy momentum tensor

Tµν = FµαF
α
ν −

1

4
F 2ηµν , (5.20)

where Fµν = ∂µAν − ∂νAµ is the gauge field strength.

5.4.2 Trace anomaly central charges, a, c

• In 4d, unlike 2d case, there are two geometric curvature invariants of scaling dimension
four. These are combinations which can appear in the RHS of the trace anomaly
equation:

⟨T µ
µ ⟩ = −

c

(8π)4
(Weyl)2 +

a

(8π)4
(Euler) , (5.21)

where

(Weyl)2 = CµναβC
µναβ = R2

µναβ − 2R2
µν +

1

3
R2 ,

Euler =
1

4
ϵµναβϵρσδγRµνρσRαβδγ = R2

µναβ − 4R2
µν +R2 (5.22)

and Cµναβ is the Weyl curvature tensor. Note that “Euler” is basically the same as
Gauss-Bonnet term. The above curvature invariants are computed for the 4d spacetime
the CFT is defined on; this four dim. space and the metric on it are of course non-
dynamical.

• We remark that, in a supersymmetric theory with external source Vµ(x) for the R-
current, there is an additional term to the RHS of (5.21) of the form c

6π2V
2
µν , where

Vµν is field strength of Vµ.

• For free CFT ’s with Ns real scalars, Nf Weyl fermions and Nv vector fields [N.D.
Birrell, P.C.W. Davies, ‘‘Quantum Fields in Curved Space,’’ Cambridge, Univ.Press

(1982)]:

c =
1

10
(
4

3
Ns + 4Nf + 16Nv) , a =

1

45
(2Ns + 11Nf + 124Nv) . (5.23)

• As we see cT ∝ c, precisely cT = 10c.

• One can show that a is related to four point function of four energy momentum tensors.

II Exercise 5.14: Using (5.23) for an N = 1 free theory with Nv vector multiplets
and Nf chiral multiplets show that

c =
2

3
(3Nv +Nf ) , a =

1

3
(9Nv +Nf ) . (5.24)

79



II Exercise 5.15: For N = 4 SCFT where we have a fixed line, the expressions of
c and a are expected to be exact and independent of the coupling. Using (5.24), show
that for an SU(Nc) N = 4 SYM theory

c = a = 4(N2
c − 1) . (5.25)

With a similar reasoning, for N = 2 SU(Nc) with Nhyper = 2Nc (with hypers in the
fundamental rep), where the theory has a fixed conformal line, show that

a =
2

3
(7N2

c − 5) , c =
8

3
(2N2

c − 1) . (5.26)

• As pointed out earlier, the U(1) part of U(N) R-symmetry of 4d SCFT’s is anomalous.
Using superconformal algebra it has been shown that the anomaly of U(1)R is related
to the trace anomaly coefficients a, c. For example for N = 1 theories

a =
3

32

(
3Tr (R3

N=1)− Tr (RN=1)
)
, c =

1

32

(
9Tr (R3

N=1)− 5Tr (RN=1)
)
, (5.27)

where the trace is over all species of Weyl fermions, and RN=1 is the generator of U(1)R
symmetry in the N = 1 superconformal algebra. For more details and references e.g.
see
D. Anselmi, D.Z. Freedman, M.T. Grisaru, A.A. Johansen, Nucl.Phys. B526
(1998) 543, hep-th/9708042,

D. Anselmi, J. Erlich, D.Z. Freedman, A.A. Johansen, Phys.Rev. D57 (1998)

7570, hep-th/9711035,

A.D. Shapere, Y. Tachikawa, JHEP 0809 (2008) 109, arXiv:0804.1957[hep-th].

• This relation, among other things, implies that there is a combination of scaling and
U(1)R Nöther currents which is non-anomalous and conserved.

• As we expected c, a are functions of the operator content of the CFT. It has been
argued [see recent papers by Slava Rychkov] that the central charges satisfy a universal
lower bound which is a function of the dimensions of the lowest and second- lowest
scalars present in the CFT.

II Exercise 5.16: In general d dimensional case work out the “Ward identity” for trace
anomaly involving two energy-momentum tensors. That is, show that

⟨T ρ
ρ (x)Tµν(y)⟩ = 0 ,

⟨T ρ
ρ (x)Tµν(y)Tαβ(z)⟩ = 2

(
δd(x− y) + δd(x− z)

)
⟨Tµν(y)Tαβ(z)⟩ (5.28)

5.4.3 Four dimensional c-theorem?!

• One can compute the central charges c and a, starting from (5.21) for any given QFT.
The theory need not be conformal or at its conformal fixed point. In this case c and
a are in general functions of the couplings of the theory, as well as the details of its
matter content (d.o.f).

• In other words, c and a have running along the RG flow.
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• Let us suppose that we start with an asymptotic free theory. Being free, in the UV
the theory is conformal and it is central charges are easily computed, e.g. as given in
(5.23). Denote them by cUV , aUV .

• Suppose that the theory has a conformal fixed point in the IR, with cIR, aIR. The
question is whether we have something similar to Zalolochikov’s c-theorem for the 4d
theories? Is cUV ≥ cIR or aUV ≥ aIR always true for any QFT?

• We now know that there is no 4d c-theorem, but there are strong evidence for having
an a-theorem.

• 4d a-theorem was originally conjectured by J. Cardy in J. Cardy, Phys. Lett.

B215, 749 (1988).
See H. Osborn, Phys. Lett. B222, 97 (1989),

I. Jack, H. Osborn, Nucl. Phys. B343, 647-688 (1990)

D .Anselmi, hep-th/9908014.pdf,
for early attempts to prove it.

• There are recent works basically proving the 4d a-theorem. The main paper is
Z. Komargodski, A. Schwimmer, JHEP 1112, 099 (2011) [arXiv:1107.3987 [hep-th]].
See also
M. A. Luty, J. Polchinski, R. Rattazzi, JHEP 1301 (2013) 152 [arXiv:1204.5221

[hep-th]].

• For more recent works e.g. see
C. Hoyos, U. Kol, J. Sonnenschein and S. Yankielowicz, JHEP 1303 (2013)

063 [arXiv:1207.0006 [hep-th]].

K. Yonekura, JHEP 1304 (2013) 011 [arXiv:1212.3028].

A. Bhattacharyya, L. -Y. Hung, K. Sen and A. Sinha, Phys. Rev. D 86 (2012)

106006 [arXiv:1207.2333 [hep-th]].

O. Antipin, M. Gillioz, E. Mlgaard and F. Sannino, Phys. Rev. D 87 (2013)

12, 125017 [arXiv:1303.1525 [hep-th]].
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6 3d CFT’s

Although there has been strong evidence for existence of 3d CFT’s since the early 1980’s, it
was not clear whether they admitted Lagrangian description. Since the mid-1990’s existential
evidence were mainly based on string and D-brane theory results and received further support
by the AdS/CFT. These latter are beyond the scope of our lectures but has its own interesting
literature. Since 2007, there has been a lot of progress in constructing explicit actions for 3d
CFT’s, what we will review very briefly. Let us however, first start with a specification of
our earlier discussions in sections 2 and 3 to 3d case.

6.1 Review of our earlier results

• The conformal group in 2+1 dim. is SO(3, 2) (and in 3 Euclidean dimensions is
SO(4, 1)). At the level of the algebra, and as far as the spinor representations are
concerned it is spin(3, 2) = sp(4,R).

• Representations of conformal group are hence labeled by the 3d spin and scaling di-
mension. Unitarity bound for these representations are (cf. (3.32))

Scalar : ∆0 ≥
1

2
,

Spin 1/2 : ∆0 ≥ 1 ,

Vector : ∆0 ≥ 2 , (6.1)

Antisymmetric Fµν: ∆0 ≥ 3/2 ,

Symmetric traceless Tµν: ∆0 ≥ 3 ,

• The spacetime dependence of two and three point correlators of primary operators in
3d CFT’s is completely fixed by the conformal invariance and four and higher point
functions of primaries are restricted to be only through conformal cross-ratios.

• Four point function of primaries can be reduced to a sum over correlators of three
primary operators and 3d conformal blocks (analogously to discussions in section 4.9.2).
Conformal blocks only depend on the spectrum of the primaries and possibly the central
charge (see below for more on the latter).

6.2 Examples of 3d CFT’s

• As 4d cases, 3d CFT’s can appear in the non-trivial RG fixed points of usual 3d QFT’s.
Of course the fixed point, if it exists, may not be perturbatively accessible and hence
the theory may not admit a simple Lagrangian description, even if we have various
pieces of evidence that the fixed point and the CFT exists.

• So, let us examine the simplest QFT’s we know of, i.e. a scalar theory e.g. in the form
of an O(N) vector or matrix model, and gauge theory.
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• Consider e.g. a vector O(N) model with (ϕaϕa)
2 type interaction. This coupling is

relevant in 3d and the theory may have a nontrivial IR fixed point. In fact this specific
theory is argued to flow to a nontrivial CFT in the IR, but the CFT may not be of
the form of standard QFT’s. For more details and discussions see I. Klebanov, A.

M. Polyakov, hep-th/0210114 and its followups.

II Exercise 6.1: Any free field, in any dimension is trivially conformal. Consider a
free 3d QFT with Ns real scalar fields, Nf Majorana fermions and Nv Maxwell U(1) gauge
fields. Compute the stress tensor central charge for this theory defined in (5.12). Start
with a free action for each case, write down the energy momentum tensor Tµν and compute
⟨Tµν(x)Tαβ(y)⟩ two point function.
Answer: cT = 3

2
(Ns +Nf ).

See H. Osborn, G.M. Shore, arXiv:hep-th/9909043, for more details.

6.2.1 (Super)conformal gauge theories

• Let’s next consider the 3d gauge theory case. In 4d case the YM gauge theory is
dimensionless with possibly negative β-function and hence we had the possibility of
finding asymptotic free CFT’s within this class of theories.

• In generic d dimensions the YM gauge coupling g2 has mass dimension 4− d. So, the
dimensionless coupling is Λd−4

0 g2, for some energy scale/cutoff Λ0. Therefore, for d < 4
the theory is super-renormalizable and non-renormalizable in d > 4.

• 3d YM theory is free in the UV (dimensionless coupling is small) and flows to strong
coupling (possibly in a fixed point) in the IR. If in 3d there is a non-trivial fixed point
in the IR, the YM theory flows to a possibly 3d CFT. In this way one may obtain a
3d CFT.

• As nowadays a standard practice, to have a control or protection over quantum cor-
rections, it is convenient to add some amount of supersymmetry and consider SYM
and study its RG flows. Using this idea one may also use the tools available in string
or M-theory gadget. All in all, what we have learned from these is the existence of
this nontrivial IR fixed point and that at this fixed point we are dealing with a 3d
superconformal field theory (SCFT).

• However, the question whether this theory admits an action description was not an-
swered until 2006, when the work of Bagger-Lambert and Gustavsson (BLG), J.Bagger
and N.Lambert, hep-th/0611108, arXiv:0711.0955, arXiv:0712.3738[hep-th];

A.Gustavsson, arXiv: 0709.1260[hep-th] indicated existence of an N = 8 3d
QFT, which was conformal invariant.

• After that the work of ABJM, O. Aharony, O. Bergman, D. Jaferis, J. Maldacena,

arXiv:0806.1218 [hep-th], put this into a more standard supersymmetric Chern-
Simons gauge theory language:

– The idea of using super-CS theory to model 3d CFT was initiated by J. Schwarz,

hep-th/0411077, and after M. Van Raamsdonk, hep-th/0803.3803 showed the
BLG theory can be written in terms of SU(2)× SU(2) Super-CS theory.
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– ABJM theory is an SU(N)× SU(N) N = 6 Chern-Simons gauge theory.

– Despite of being a CS theory, the theory is parity even, because the parity just
exchanges the two gauge groups.

– ABJM theory has hence two parameters: level of the CS, which is an integer k,
and rank of the gauge group N . The large N behavior of the theory is governed
by N/k which plays the role of ’t Hooft coupling.

– For generic values of k the theory has N = 6 supersymmetries, i.e. 12 real-valued
3d Poincaré supercharges. However, for k = 1, 2 the SUSY is enhanced and the
theory has N = 8, i.e. 16 super-Poincaré charges.

– The theory is conformal and has hence the same number of super-conformal su-
percharges, i.e. it has altogether 24 supercharges for generic k and 32 for k = 1, 2.

• Since then there has been many many followup papers exploring various extensions of
the ABJM idea to cases with less SUSY and more varieties of matter fields. Now, we
seem to have a classification of 3d superconformal Chern-Simons field theories with
N ≥ 4. For a review and collection of references e.g. see X. Chu, Master thesis at

http://fy.chalmers.se/ tfebn/YongsMScthesis.pdf.

• The BLG and ABJM models and the followups are related to the problem of low energy
effective action for multiple M2 branes in M-theory. This topic is beyond the scope
of our lectures, however, interested reader is encouraged to look at J. Bagger, N.

Lambert, S. Mukhi, C. Papageorgakis, arXiv:1203.3546[hep-th].

6.3 3d Superconformal Algebras OSp(N|4)

• The 3d conformal algebra is so(3, 2) ≃ sp(4,R).

• One may extend it to suerconformal algebra by addition of supercharges and R-
symmetry generators.

• 3d spinors are constructed from two Weyl 2d fermions. As discussed in section 4, in
2d spinors can be simultaneously Majorana and Weyl. Therefore, the 3d fermions are
two component real-valued, say denoted by Qa, a = 1, 2.

• N-extended 3d super-Poincaré hence involvesQI
a , I = 1, · · ·N and has 2N supercharges.

• N-extended 3d superconformal algebra besides QI
a has 2N superconformal supercharges

SI
a .

• Dealing with real-valued spinors, the R-symmetry group, acting on I index of the
supercharges, is SO(N).

• Due to Kac classification of superalgebras
V. Kac, Comm. Math. Phys., 53: 31, (1977),

the N-extended 3d superconformal algebra is hence OSp(N|4,R). This is a superalge-
bra

– whose bosonic part is SO(N)R × Sp(4,R)conf ,
II Exercise 6.2: How many bosonic generators are there?
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– its 4N fermionic generators are spinors N-vectors of R-symmetry group while a
four component sp(4) real-valued spinors. That is, they are of the form QI

α where
I = 1, ·,N and α = 1, 2, 3, 4. QI

α may be decomposed into QI
a, S

I
a .

– The full commutations relations of Osp(N|4) are:

{QI
α,Q

J
β} = δIJ(iΓµν)αβMµν + Sαβ(iΓ

IJ)RIJ ,

[Mµν ,Q
I
α] = (iΓµν)αβQ

I
β , (6.2)

[RIJ ,Q
K
α ] = (iΓIK)QJ

α − (iΓJK)QI
α ,

where Mµν , µ, ν = 1, 2, 3, 4, 5 are the so(3, 2) generators and RIJ , I, J = 1, · · · ,N
are SO(N) R-symmetry generators. Sαβ is the symplectic metric on sp(4) and Γ’s
are corresponding Dirac Γ-matrices of the appropriate group, SO(3, 2) or SO(N).

– For more material on 3d superconformal algebras see
Jeong-Hyuck Park, http://arxiv.org/pdf/hep-th/9910199.pdf.

• A bit more on matter content of ABJM theory:

– As mentioned ABJM theory is a SU(N) × SU(N) CS gauge theory with N = 6
supersymmetries. Therefore,

– the theory has a two SU(N) gauge fields. Nonetheless, being governed by CS
action, there are not propagating d.o.f.

– The theory has 4 fermions in bi-fundamental representation of the gauge group.
That is, they are in (N, N̄)

⊕
(N̄ ,N) representation. The spinors may be arranged

such that they are in spinor rep. of the R-symmetry algebra so(6) ≃ su(4).

– There are similar number of complex scalars. That is, we have four complex
scalars in 4 of su(4)R while in bifundamental (N, N̄) of gauge group.

– SUSY implies that there are potential terms of the (scalar)6 and (scalar)2(fermion)2

terms in the action.
II Exercise 6.3: Construct all Lorentz and gauge invariant marginal operators
which could be made from the above mentioned gauge, fermion and scalar fields.
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7 6d CFT’s

• Perhaps the least understood and studied among CFT’d is the 6d case. In this case
the conformal group is SO(6, 2) ≃ SO∗(8).

• There are trivial (free) field theory examples of 6d CFT’s, which may involve scalar,
fermionic, gauge field, as well as two-form fields.

• Six is the minimum dimension where the option of two-form field Bµν as an independent
d.o.f which cannot be rendered in terms of scalar or vector fields appears. The “field
strength of B, H = dB, is a three form and is hence non-dynamical in 3d; it is Hodge
dual to a one-form and hence dual to a pseudoscalar in 4d; it is dual to a vector in 5d
and in 6d it is dual to (another) two-form.

II Exercise 7.1: For a free 6d CFT consisting of Ns real scalars, Nf Weyl fermions
and Nv vectors and NB two-form fields with Lagrangian − 1

12
H2, compute the stress

tensor central charge cT defined in (5.12).
Answer: cT = 6

5
Ns+12Nf+2·54NB. If the form field is self-dual then the contribution

is halved.
See hep-th/9911135.

NOTE: In any dimension other than two, a generally covariant gravity theory cannot
be well-defined conformal field theory. This is due to the fact that two derivative theory
of gravity (Einstein Hilbert) involves a dimensionful parameter the Newton constant.
The higher derivative theories of gravity, like Gauss-Bonnet or Weyl gravity, have the
generic feature that they involve negative-norm states (ghosts).

• The unitarity (lower) bound on scaling dimensions of the fields are given by the scaling
dimension of the corresponding free fields.

7.1 6d superconformal algebras OSp(6, 2|2N)

• As in three and four dimensions, addition of supersymmetry improves the control over
the running of parameters/coupling and also keeps some of physical observables and
correlation functions protected.

• In 6d we have CPT invariant Weyl fermions and the SUSY algebra can only involve one
chirality. The minimal SUSY in 6d, N = 1, hence only involves one so(5, 1) ∼ su(4)
fermions, which has four complex components. We can have (NL,NR) super-Poincaré
which have NL left handed and NR right handed supercharges, altogether 8(NL +NR)
real supercharges.

• Nahm’s classification of Superconformal algebras (W. Nahm, Nucl.Phys.B135 (1978)

149,) tells us that there the maximum possible dimension of having superconformal
algebra is d = 6. In higher dimensions we cannot have conformal (field) theories. In a
similar way, SUSY restricts the largest spacetime dimension we can have supergravity
to be eleven.

• Moreover, according to Nahm’s classification only 6d chiral super-Poincaré (0,N) admit
a conformal extension.
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• The two possible 6d superconformal algebras associated with (0, 1) and (0, 2) super-
Poincaré are Osp(6, 2|2N) ≃ Osp(6, 2|2N) superconformal algebras (with N = 1, 2,
respectively). For higher N the smallest rep. will involve spins larger or equal to two
and are hence not physically associated with a CFT.

• The bosonic part of osp(6, 2|N) superalgebra is so(6, 2)conf × sp(2N)R. (Note that
sp(2) ≃ su(2) and sp(4) ≃ so(5).)
II Exercise 7.2: What is the dimension of the bosonic part of OSp(6, 2|2N) super-
group?

• The supercharges QAα, where A = 1, · · · , 8 is the so∗(8) Majorana-Weyl index and
α = 1, 2 is the su(2) (for N = 1) or α = 1, 2, 3, 4 is the sp(4) spinor index (for
N = 2). We note that superconformal charges QAα may be decomposed as (QIα, S̄

I
α)

where QIα are 6d super-Poincaré SO(5, 1) Weyl spinors and S̄I
α are 6d superconformal

supercharges. For N = 1, Q†
Iα = Q̄I

α̇ (and similarly for superconformal charges S̄I
α, i.e.

so(5, 1) and su(2) chiralities are linked to each other and hence for N = 1, OSp(6, 2|2)
has altogether 16 real supercharges. With a similar argument N = 2 superalgebra has
32 real supercharges.

• There are hence 16N real supercharges.

{QAα,QBβ} = 2(iΓIJ)ABMIJδαβ + 2(iΓij)αβRijδAB + Z[AB],[αβ] , (7.1)

where ΓIJ and Γij are respectively 8×8 so∗(8) and 2N×2N sp(2N) Dirac matrix com-
mutators; MIJ is so(6, 2) generators and Rij are sp(2N) generators. Z term which has
both so∗(8) and sp(2N) antisymmetric indices, denotes all possible central extensions.

NOTE: On the LHF of (7.1), we have an object with 16N × 16N symmetric matrix
indices. On the RHS, however, we have decomposed it into MIJ (there are 28 of them)
and Rij there are N(2N+ 1) of them. Some of the rest can hence be accommodated in
the central charges.

II Exercise 7.3: How many Z’s are there? The indices on Z are spinorial indices.
One may decompose them in terms so(6, 2) and sp(2N) tensors (or forms) using ΓIJ ···K

and Γij···k matrices. What are the these forms?

• The smallest reps of N = (0, 1) in 6d are chiral multiplet with four real scalars and a
Weyl fermion and the gauge multiplet containing a gauge field and a Weyl fermion.

• The smallest N = (1, 1) multiplet is obtained from putting together a N = (0, 1) gauge
multiplet and a N = (1, 0) chiral multiplet. The 6d gauge multiplet hence contains a
gauge field, four real scalars and two opposite chirality Weyl fermions. The smallest
N = (0, 2) multiplet, on the other hand, contains a self-dual two-form, five real scalars
and two Weyl fermions of similar chirality.

See S. Ferrara, E. Sokatchev, hep-th/0001178; J-H. Park, hep-th/9807186 for
representations of 6d superconformal algebras.

7.2 The (0, 2) theory as a candidate for 6d CFT

• Now we would like to discuss if there is indeed any local QFT which exhibits 6d
conformal or superconformal invariance?
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• Let’s start with YM gauge theory as a possible candidate. Yang Mills coupling in d > 4
has negative mass dimension and hence YM gauge theory in d > 4 is not asymptotic
free and flows to a strongly coupled theory.

• The UV completion of 5d and 6d YM theories is believed (based on evidence coming
from string, brane and M-theory) to flow to a non-trivial interacting local 6d CFT.
This CFT is expected not to involve light vector (gauge) field d.o.f.

• The (0, 2) super-Poincaré admits a central extension which corresponds to a self-dual
two-form field. That is a two-from B such that ∗dB = dB. States which carry this
central charge are one-dimensional objects, strings. These states are hence 1/2-BPS
states.

II Exercise 7.4: Show the above. Start from 6d super-Poincaré and analyze possible
central extensions.

II Exercise 7.5: Count number of propagating d.o.f of the 6d self-dual two-form
field and show that it is three.

II Exercise 7.6: Compute the stress tensor central charge cT for a free (0, 1) theory
containing N 6d chiral multiplets. Answer: cT = 84

5
N .

Compute the stress tensor central charge cT for a free (0, 2) theory containing N of its
smallest multiplet. Answer: cT = 84N .

• It is expected that the 6d CFT which has (0, 2) SUSY should involve this self-dual
two-form. This self-dual two-form is part of the supermultiplet which also contain five
real scalars. This theory is also called “little string theory”.

• We only know that the (0, 2) theory exists. We know that it arises as UV completion
of 5d SYM theory. We have a matrix model formulation for its DLCQ description.
However, we do not have an explicit action for it. This is an active field of research to
construct this. As some recent attempts, see recent paper by N. Lambert.

7.3 Trace anomaly and a-theorem in 6d

• Trace anomaly in generic even dimension d

⟨T µ
µ ⟩ =

∑
i

ciIi − (−1)d/2a Eulerd (7.2)

where Ii are combinations of Riemann curvature to power d/2 and Eulerd is the topo-
logical term Euler density Tr (γd+1R∧ · · ·∧R), where R is the curvature two form and
γd+1 is the extension of 4d γ5, is the product of all d dimensional Dirac matrices. ci, a
are the central charges of the theory. One of them is the stress tensor central charge
cT .

II Exercise 7.7: Work out all possible curvature combinations which may arise in
the 6d trace anomaly. Refs.
L. Bonora, P. Pasti and M. Bregola, Class. Quant. Grav. 3 (1986) 635,

S.Deser, A.Schwimmer, Phys.Lett.B309 279 (1993) [arXiv:hep-th/9302047].
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• See http://arxiv.org/abs/arXiv:1205.3994 for preliminary discussions on a 6d a-
theorem.

A Spinor representations in various dimensions

• For the spinor reps of SO(d) the starting point is to construct γ matrices. These are
solutions to the d dimensional Clifford algebra

{γa, γb} = 2δab , a, b = 1, 2, · · · , d (A.1)

• As a role of thumb the solutions to above are:

– The rank of SO(d) is n = [d/2], which is d/2 in even dimensions and (d− 1)/2 in
odd dimensions.

– In any even dimension d = 2n, 2n×2n matrices for 2n component Dirac fermions.

– In even dimensions one can show that we have “Γ” matrix,

Γ = γ1γ2 · · · γd (A.2)

which commutes with the generators of the SO(d) rotation group.
II Exercise A.1: Show the above noting that Lab =

1
4
[γa, γb] form a represen-

tation of SO(d).

Using the Γ matrix one can reduce the Dirac fermions into two 2n−1 component
Weyl fermions:

ΓΨ = ±Ψ . (A.3)

In the Weyl representation, Γ is basically equal to identity (or minus-identity).
NOTE: In general the fermionic representations are COMPLEX-valued.

– In odd dimension d = 2n + 1, fermions (and corresponding γ matrices) are con-
structed from two Weyl fermions of one lower even dimension. That is, fermions
are in general 2n dimensional.

• Although in general Dirac fermions in various dimensions are complex-valued, it is
possible to construct real-valued Majorana fermions, using the charge conjugation
operator C:

CΨC−1 = Ψ . (A.4)

Majorana fermions hence form 2n component real fermions, where n = [d/2].

• In general even dimension d = 2n the charge conjugation operator C and the chirality
operator Γ do not commute and hence cannot be diagonalized simultaneously. However,
one can show that in d = 4k+2 C and Γ commute and we can have Majorana-Weyl
fermions.
That is, in d = 2, 6, 10, · · · the irreducible fermionic representation is 2n real-valued
spinors.

• For further reading on spinor representations see the Appendix of Volume II of Plochin-
ski’s string theory book.
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