Entanglement in Lifshitz-type QFTs

M. R. Mohammadi Mozaffar, Ali Mollabashi Based on arXiv:1705.00483

Recent Trends in String Theory and Related Topics School of Physics (IPM)

8 May 2017

- Entanglement in QFTs
 - Definition and Properties
 - Area Law
 - Correlator Method
- 2 Lifshitz-type QFTs
 - Lifshitz Scaling Symmetry
 - Lifshitz Scalar Theory
- 3 Entanglement in Lifshitz Scalar Theory
 - Entanglement Entropy
 - Conclusions

Entanglement entropy (EE) is an important concept which appears in condensed matter, quantum information and black hole physics.

EE is useful for studying

- Quantum phase transitions at T=0
- Non-equilibrium processes, e.g., quantum quenches
- The connection between gauge theory and gravity
-

(Pure) Entangled states

 \bullet Consider two quantum systems, i.e., A and B

$$\mathcal{H}_A$$
, $|i\rangle$, $i=1,\cdots,n$, \mathcal{H}_B , $|a\rangle$, $a=1,\cdots,m$

• Construct M using the tensor product of A and B

$$\mathcal{H}_M = \mathcal{H}_A \otimes \mathcal{H}_B, \quad |i\rangle \otimes |a\rangle \equiv |i,a\rangle$$

• Separable states

$$|\chi\rangle_{\mathcal{H}_M} = |\psi\rangle_{\mathcal{H}_A} \otimes |\phi\rangle_{\mathcal{H}_B}$$

• (Pure) Entangled states

$$|\chi\rangle_{\mathcal{H}_M} \neq |\psi\rangle_{\mathcal{H}_A} \otimes |\phi\rangle_{\mathcal{H}_B}$$

Example: Spin 1/2 Particles

• Separable states

$$|\Psi_1\rangle = |\uparrow_A\rangle \otimes |\downarrow_B\rangle$$
$$|\Psi_2\rangle = |\downarrow_A\rangle \otimes |\uparrow_B\rangle$$

• Entangled states

$$|\Psi_3\rangle = \frac{1}{\sqrt{2}} (|\uparrow_A\rangle \otimes |\downarrow_B\rangle \pm |\downarrow_A\rangle \otimes |\uparrow_B\rangle)$$

Challenge

Entanglement Measures!

Entanglement entropy, Mutual information, ...

Reduced Density Matrix

• Consider the density matrix for a pure system $M = A \cup B$

$$\rho_M = |\psi\rangle\langle\psi|$$

• Definition of reduced density matrix for A

$$\rho_A \equiv \text{Tr}_B(\rho_M) = \sum_{i=1}^{\dim[B]} \langle i_B | \rho_M | i_B \rangle$$

• For any $O_A \in A$

$$\langle O_A \rangle = \text{Tr}_A(\rho_A O_A)$$

Entanglement Entropy

• von-Neumann entropy for ρ_A

$$S_A \equiv -\text{Tr}_A \left(\rho_A \log \rho_A \right) = -\sum_{i=1}^{\dim[A]} \langle i_A | \rho_A \log \rho_A | i_A \rangle$$

• Example:

$$|\Psi_1\rangle$$
 and $|\Psi_2\rangle$,

$$S_A = 0$$

$$|\Psi_3\rangle = \frac{1}{\sqrt{2}} \left(|\Psi_1\rangle \pm |\Psi_2\rangle \right),$$

$$S_A = \log 2$$

Entanglement Entropy

- Properties
 - EE corresponds to a non-linear operator in QM

$$S(A) = S(B)$$

Subadditivity

$$S(A) + S(B) \ge S(A \cup B)$$

and \cdots

Challenge

Generalization to QFT (Continuum Limit)?

Different Notions of EE in QFT

- Different Hilbert space decompositions lead to different types of EE
 - Field space entanglement entropy

```
[Yamazaki '13, Mollabashi-Ryu-Takayanagi '14, MM-Mollabashi '15]
```

② Geometric (Entanglement) entropy

```
[Bombelli-Koul-Lee-Sorkin '86, Srednicki '93, Callan-Wilczek '94]
```

3 · ·

- Consider a local d-dimensional QFT on $\mathbb{R} \times \mathcal{M}^{(d-1)}$
- Divide $\mathcal{M}^{(d-1)}$ into two parts

• Locality implies $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

$$S_A = -\text{Tr}_A \left(\rho_A \log \rho_A\right)$$

Properties of EE in QFTs

- Infinite number of DOFs in QFT \rightarrow Divergent EE
- In d-1 spatial dimensions we should have for any QFT

$$S_A \propto \frac{S_{d-2}}{\epsilon^{d-2}} + \dots + \frac{S_1}{\epsilon} + S_{\text{univ.}} \log \epsilon + S_0$$

 ϵ : Lattice constant (UV cutoff⁻¹)

 S_{d-2} : Area of the entangling surface

 S_{univ} : Universal coefficient

 S_0 : Finite part

Area Law

$$S_A \propto \frac{S_{d-2}}{\epsilon^{d-2}} + \cdots$$

- ϵ : Lattice constant (UV cutoff⁻¹)
- S_{d-2} : Area of the entangling surface

Area Law

$$S_A \propto \frac{S_{d-2}}{\epsilon^{d-2}} + \cdots$$

- ϵ : Lattice constant (UV cutoff⁻¹)
- S_{d-2} : Area of the entangling surface

Area Law

Entanglement in QFTs

- Area law breaks down in specific cases:
 - Logarithmic divergence in CFT₂ [Calabrese-Cardy, '04]

$$\stackrel{A}{\longleftarrow \ell \longrightarrow}$$

- 2 Logarithmic divergence for fermions [Wolf '06, Gioev-Klich '06] Formation of Fermi surface
- 3 Volume law for non-local QFTs [Shiba-Takayanagi '13]

How we compute EE?

• $S_A = -\text{Tr}_A \left(\rho_A \log \rho_A \right)$

Taking the logarithm of ρ_A is very complicated!

• Renyi Entropy and Replica Trick

$$S_A^{(n)} = \frac{1}{1-n} \text{Tr}_A (\rho_A^n), \quad S_A = \lim_{n \to 1} S_A^{(n)}$$

- Different Methods for Computing EE
 - Heat Kernel Method
 - Correlator Method
 - 4 Holographic Prescription

Correlator Method

• Having $\langle \mathcal{O}_A \rangle$ for any \mathcal{O} restricted to A, one can fix ρ_A

$$\operatorname{Tr}\left(\rho_A \mathcal{O}_A\right) = \langle \mathcal{O}_A \rangle$$

- ② In quadratic theories, $\operatorname{Tr}(\rho_A \mathcal{O}_A)$ can be written in terms of 2-point functions of the theory
- **3** The eigenvalues of ρ_A , i.e., ε_k , is given by

$$\varepsilon_k = 2 \coth^{-1}(2\nu_k)$$

where ν_k 's are eigenvalues of $\sqrt{X.P}$

$$X_{ij} = \langle \phi_i \phi_j \rangle, \quad P_{ij} = \langle \pi_i \pi_j \rangle$$

[I. Peschel 2003]

Lifshitz Scaling Symmetry

Lifshitz-type QFTs

Lifshitz Scaling at QCP

• Anisotropic scaling at a quantum critical point [Lifshitz, 1941]

$$t \to \lambda^z t$$
, $\vec{x} \to \lambda \vec{x}$, $[x] = -1$, $[t] = -z$

$$[x] = -1,$$

$$[t] = -z$$

• Different Scaling Dimension \longrightarrow Different RG Rate [Hertz,

1976]

Free Scalar Theory

Action

$$I = \frac{1}{2} \int dt d\vec{x} \left[\dot{\phi}^2 - \sum_{i=1}^d (\partial_i^z \phi)^2 - m^{2z} \phi^2 \right]$$

Mass Dimensions

$$[t] = -z, \quad [\vec{x}] = -1, \quad [m] = 1, \quad [\phi] = \frac{d-z}{2}$$

• Ground State Two Point Correlator

$$\langle \phi(0)\phi(r)\rangle \sim r^{-d+z}$$

Free Scalar Theory

Action

$$I = \frac{1}{2} \int dt d\vec{x} \left[\dot{\phi}^2 - \sum_{i=1}^d (\partial_i^z \phi)^2 - m^{2z} \phi^2 \right]$$

Mass Dimensions

$$[t] = -z, \quad [\vec{x}] = -1, \quad [m] = 1, \quad [\phi] = \frac{d-z}{2}$$

• Ground State Two Point Correlator

$$\langle \phi(0)\phi(r)\rangle \sim r^{-d+z}$$

Correlations grow as the dynamical exponent increases

Entanglement in Lifshitz Scalar Theory

EE for Massless Scalar

• 1 + 1-Dimensions

EE for Massless Scalar

• 2 + 1-Dimensions (Square entangling region)

EE for Massless Scalar

• 2 + 1-Dimensions (Disk entangling region)

- EE increases while the dynamical exponent is increased
- $oldsymbol{\circ}$ For large values of z and small enough entangling regions EE exhibits a volume law scaling!
- ullet For generic z, the leading term of EE is a function which interplay between area law and volume law scaling
 - The simplest choice

$$S_A \sim \left(\frac{\ell}{\epsilon}\right)^{d-\frac{1}{z}} + \cdots$$

- Kinetic Term in Hamiltonian $(\partial_i^z \phi)^2$
- Discretize Hamiltonian on a Lattice

$$z = 1$$
 $\{\phi_{i+1}, \phi_i, \phi_{i-1}\} \in \mathcal{H}$ $z = 2$ $\{\phi_{i+2}, \phi_{i+1}, \phi_i, \phi_{i-1}, \phi_{i-2}\} \in \mathcal{H}$.

 $z \qquad \{\phi_{i+z}, \phi_{i+z-1}, \phi_{i+z-2}, \cdots, \phi_{i-z+2}, \phi_{i-z+1}, \phi_{i-z}\} \in \mathcal{H}$

• For larger values of z the number of correlated points due to the kinetic term increases

• The correlation between points inside and outside the entangling region increases

• For larger values of z the number of correlated points due to the kinetic term increases

• The correlation between points inside and outside the entangling region increases

Non-local effects due to the nontrivial z

Corner Contributions to EE

• For z = 1 corner contributions to EE are well-known to be local effects

$$S_A = \cdots + S_{\text{corner}} \log \frac{\ell}{\epsilon} + \cdots$$

$$S_{\text{corner}} = \sum_{\text{corners on } \partial A} a(\theta_i),$$

• Corner contributions are no more local effects for z > 1

Conclusions

In a free scalar theory with Lifshitz scaling symmetry:

- \bullet EE is an increasing function of z
- ullet For large values of z and small enough entangling regions EE exhibits a volume law scaling
- Mutual information between subregions for a fixed configuration is an increasing function of z
- The tripartite information is positive (Holographic dual!)
- For large values of z the corner contributions are no more additive

Further Studies

- Considering other entanglement measures which are more suitable for mixed states, e.g., logarithmic negativity
- Study the time evolution of EE after a quantum quench
- Investigating the effects due to a non-zero mass on the entanglement spectrum
- <u>. . . .</u>