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Motivation

Entanglement entropy (EE) is an important concept which

appears in condensed matter, quantum information and black

hole physics.

EE is useful for studying

Quantum phase transitions at T = 0

Non-equilibrium processes, e.g., quantum quenches

The connection between gauge theory and gravity

· · ·
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Definition and Properties

(Pure) Entangled states

Consider two quantum systems, i.e., A and B

HA,
∣∣i〉, i = 1, · · · , n, HB,

∣∣a〉, a = 1, · · · ,m

Construct M using the tensor product of A and B

HM = HA ⊗HB,
∣∣i〉 ⊗ ∣∣a〉 ≡ ∣∣i, a〉

Separable states ∣∣χ〉HM
=
∣∣ψ〉HA

⊗
∣∣φ〉HB

(Pure) Entangled states∣∣χ〉HM
6=
∣∣ψ〉HA

⊗
∣∣φ〉HB
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Definition and Properties

Example: Spin 1/2 Particles

Separable states ∣∣Ψ1〉 =
∣∣ ↑A〉 ⊗ ∣∣ ↓B〉∣∣Ψ2〉 =
∣∣ ↓A〉 ⊗ ∣∣ ↑B〉

Entangled states∣∣Ψ3〉 =
1√
2

(∣∣ ↑A〉 ⊗ ∣∣ ↓B〉 ± ∣∣ ↓A〉 ⊗ ∣∣ ↑B〉)
Challenge

Entanglement Measures!

Entanglement entropy, Mutual information, · · ·
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Definition and Properties

Reduced Density Matrix

Consider the density matrix for a pure system M = A ∪B

ρM =
∣∣ψ〉〈ψ∣∣

Definition of reduced density matrix for A

ρA ≡ TrB(ρM ) =
dim[B]∑
i=1
〈iB
∣∣ρM ∣∣iB〉

For any OA ∈ A

〈OA〉 = TrA(ρAOA)
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Definition and Properties

Entanglement Entropy

von-Neumann entropy for ρA

SA ≡ −TrA (ρA log ρA) = −
dim[A]∑
i=1
〈iA
∣∣ρA log ρA

∣∣iA〉
Example:

∣∣Ψ1〉 and
∣∣Ψ2〉, SA = 0

∣∣Ψ3〉 = 1√
2

(∣∣Ψ1〉 ±
∣∣Ψ2〉

)
, SA = log 2
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Definition and Properties

Entanglement Entropy

Properties

1 EE corresponds to a non-linear operator in QM

2 When A ∪B is pure S(A) = S(B)

3 Subadditivity S(A) + S(B) ≥ S(A ∪B)

and · · ·

Challenge

Generalization to QFT (Continuum Limit)?
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Definition and Properties

Different Notions of EE in QFT

Different Hilbert space decompositions lead to different

types of EE

1 Field space entanglement entropy

[Yamazaki ’13, Mollabashi-Ryu-Takayanagi ’14, MM-Mollabashi ’15]

2 Geometric (Entanglement) entropy

[Bombelli-Koul-Lee-Sorkin ’86, Srednicki ’93, Callan-Wilczek ’94]

3 · · ·
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Definition and Properties

Geometric entropy

Consider a local d-dimensional QFT on R×M(d−1)

Divide M(d−1) into two parts

Locality implies H = HA ⊗HB

SA = −TrA (ρA log ρA)
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Definition and Properties

Properties of EE in QFTs

Infinite number of DOFs in QFT → Divergent EE

In d− 1 spatial dimensions we should have for any QFT

SA ∝ Sd−2

εd−2 + · · ·+ S1
ε + Suniv. log ε+ S0

ε : Lattice constant (UV cutoff−1)

Sd−2: Area of the entangling surface

Suniv.: Universal coefficient

S0: Finite part
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Area Law

Area Law

SA ∝ Sd−2

εd−2 + · · ·

ε : Lattice constant (UV cutoff−1)

Sd−2: Area of the entangling surface
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Area Law

Area Law

SA ∝ Sd−2

εd−2 + · · ·

ε : Lattice constant (UV cutoff−1)

Sd−2: Area of the entangling surface
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Area Law

Area Law

Area law breaks down in specific cases:

1 Logarithmic divergence in CFT2 [Calabrese-Cardy, ’04]

A

←− ` −→

2 Logarithmic divergence for fermions [Wolf ’06, Gioev-Klich ’06]

Formation of Fermi surface

3 Volume law for non-local QFTs [Shiba-Takayanagi ’13]
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Correlator Method

How we compute EE?

SA = −TrA (ρA log ρA)

Taking the logarithm of ρA is very complicated!

Renyi Entropy and Replica Trick

S
(n)
A = 1

1−nTrA (ρnA), SA = limn→1 S
(n)
A

Different Methods for Computing EE

1 Heat Kernel Method

2 Correlator Method

3 Holographic Prescription
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Correlator Method

Correlator Method

1 Having 〈OA〉 for any O restricted to A, one can fix ρA

Tr (ρAOA) = 〈OA〉

2 In quadratic theories, Tr (ρAOA) can be written in terms of

2-point functions of the theory

3 The eigenvalues of ρA, i.e., εk, is given by

εk = 2 coth−1(2νk)

where νk’s are eigenvalues of
√
X.P

Xij = 〈φiφj〉, Pij = 〈πiπj〉

[I. Peschel 2003]
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Lifshitz Scaling Symmetry

Lifshitz Scaling at QCP

Anisotropic scaling at a quantum critical point [Lifshitz, 1941]

t→ λz t, ~x→ λ ~x, [x] = −1, [t] = −z

Different Scaling Dimension −→ Different RG Rate [Hertz,

1976]
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Lifshitz Scalar Theory

Free Scalar Theory

Action

I = 1
2

∫
dtd~x

[
φ̇2 −

∑d
i=1(∂

z
i φ)2 −m2zφ2

]
Mass Dimensions

[t] = −z, [~x] = −1, [m] = 1, [φ] = d−z
2

Ground State Two Point Correlator

〈φ(0)φ(r)〉 ∼ r−d+z

Correlations grow as the dynamical exponent increases
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Lifshitz Scalar Theory

Free Scalar Theory

Action
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2
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dtd~x
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Entanglement Entropy

EE for Massless Scalar

1 + 1-Dimensions

A

←− ` −→
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Entanglement Entropy

EE for Massless Scalar

2 + 1-Dimensions (Square entangling region)
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Entanglement Entropy

EE for Massless Scalar

2 + 1-Dimensions (Disk entangling region)
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Entanglement Entropy

Results

1 EE increases while the dynamical exponent is increased

2 For large values of z and small enough entangling regions

EE exhibits a volume law scaling!

3 For generic z, the leading term of EE is a function which

interplay between area law and volume law scaling

The simplest choice

SA ∼
(
`
ε

)d− 1
z + · · ·
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Entanglement Entropy

Results

Kinetic Term in Hamiltonian (∂zi φ)2

Discretize Hamiltonian on a Lattice

z = 1 {φi+1, φi, φi−1} ∈ H

z = 2 {φi+2, φi+1, φi, φi−1, φi−2} ∈ H

.

.

z {φi+z, φi+z−1, φi+z−2, · · · , φi−z+2, φi−z+1, φi−z} ∈ H
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Entanglement Entropy

Results

For larger values of z the number of correlated points due

to the kinetic term increases

..

z = 1

..

z = 2

..

z = 4

The correlation between points inside and outside the

entangling region increases

Non-local effects due to the nontrivial z
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Entanglement Entropy

Results
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Entanglement Entropy

Corner Contributions to EE

For z = 1 corner contributions to EE are well-known to be

local effects

SA = · · ·+ Scorner log `
ε + · · ·

Scorner =
∑

corners on ∂A a (θi) ,

. .

Corner contributions are no more local effects for z > 1
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Conclusions

Conclusions

In a free scalar theory with Lifshitz scaling symmetry:

EE is an increasing function of z

For large values of z and small enough entangling regions

EE exhibits a volume law scaling

Mutual information between subregions for a fixed

configuration is an increasing function of z

The tripartite information is positive (Holographic dual!)

For large values of z the corner contributions are no more

additive

For massive theory the behavior of small mass limit at

fixed z is very similar to the behavior of large z at fixed m
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Conclusions

Further Studies

Considering other entanglement measures which are more

suitable for mixed states, e.g., logarithmic negativity

Study the time evolution of EE after a quantum quench

Investigating the effects due to a non-zero mass on the

entanglement spectrum

· · ·
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